Personalized Clothing Prediction Algorithm Based on Multi-modal Feature Fusion

被引:0
|
作者
Liu, Rong [1 ,2 ]
Joseph, Annie Anak [1 ]
Xin, Miaomiao [2 ]
Zang, Hongyan [2 ]
Wang, Wanzhen [2 ]
Zhang, Shengqun [2 ]
机构
[1] Univ Malaysia Sarawak, Fac Engn, Kota Samarahan, Sarawak, Malaysia
[2] Qilu Inst Technol, Comp & Informat Engn, Jinan, Peoples R China
关键词
fashion consumers; image; text data; personalized; multi-modal fusion;
D O I
10.46604/ijeti.2024.13394
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the popularization of information technology and the improvement of material living standards, fashion consumers are faced with the daunting challenge of making informed choices from massive amounts of data. This study aims to propose deep learning technology and sales data to analyze the personalized preference characteristics of fashion consumers and predict fashion clothing categories, thus empowering consumers to make well-informed decisions. The Visuelle's dataset includes 5,355 apparel products and 45 MB of sales data, and it encompasses image data, text attributes, and time series data. The paper proposes a novel 1DCNN-2DCNN deep convolutional neural network model for the multi-modal fusion of clothing images and sales text data. The experimental findings exhibit the remarkable performance of the proposed model, with accuracy, recall, F1 score, macro average, and weighted average metrics achieving 99.59%, 99.60%, 98.01%, 98.04%, and 98.00%, respectively. Analysis of four hybrid models highlights the superiority of this model in addressing personalized preferences.
引用
收藏
页码:216 / 230
页数:15
相关论文
共 50 条
  • [21] Traffic Flow Prediction Based on Two-Channel Multi-Modal Fusion of MCB and Attention
    Qin, Xiaoan
    IEEE ACCESS, 2023, 11 : 58745 - 58753
  • [22] Prediction of brain tumor recurrence location based on multi-modal fusion and nonlinear correlation learning
    Zhou, Tongxue
    Noeuveglise, Alexandra
    Modzelewski, Romain
    Ghazouani, Fethi
    Thureau, Sebastien
    Fontanilles, Maxime
    Ruan, Su
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 106
  • [23] Automatic depression prediction via cross-modal attention-based multi-modal fusion in social networks
    Wang, Lidong
    Zhang, Yin
    Zhou, Bin
    Cao, Shihua
    Hu, Keyong
    Tan, Yunfei
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [24] Evaluation Method of Teaching Styles Based on Multi-modal Fusion
    Tang, Wen
    Wang, Chongwen
    Zhang, Yi
    2021 THE 7TH INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION PROCESSING, ICCIP 2021, 2021, : 9 - 15
  • [25] Multi-Modal Fusion Emotion Recognition Based on HMM and ANN
    Xu, Chao
    Cao, Tianyi
    Feng, Zhiyong
    Dong, Caichao
    CONTEMPORARY RESEARCH ON E-BUSINESS TECHNOLOGY AND STRATEGY, 2012, 332 : 541 - 550
  • [26] Multi-modal Perception Fusion Method Based on Cross Attention
    Zhang B.-L.
    Pan Z.-H.
    Jiang J.-Z.
    Zhang C.-B.
    Wang Y.-X.
    Yang C.-L.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2024, 37 (03): : 181 - 193
  • [27] Multi-Modal Fusion Technology Based on Vehicle Information: A Survey
    Zhang, Xinyu
    Gong, Yan
    Lu, Jianli
    Wu, Jiayi
    Li, Zhiwei
    Jin, Dafeng
    Li, Jun
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (06): : 3605 - 3619
  • [28] Transferable multi-modal fusion in knee angles and gait phases for their continuous prediction
    Guo, Zhenpeng
    Zheng, Huixian
    Wu, Hanrui
    Zhang, Jia
    Zhou, Guoxu
    Long, Jinyi
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (03)
  • [29] Cascade fusion of multi-modal and multi-source feature fusion by the attention for three-dimensional object detection
    Yu, Fengning
    Lian, Jing
    Li, Linhui
    Zhao, Jian
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [30] Low-level fusion of audio and video feature for multi-modal emotion recognition
    Wimmer, Matthias
    Schuller, Bjoern
    Arsic, Dejan
    Rigoll, Gerhard
    Radig, Bernd
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, 2008, : 145 - +