Effect of Y2O3 Concentration on the Surface and Bulk Crystallization of Multicomponent Silicate Glasses

被引:2
作者
Beniaiche, Akram [1 ]
Tamayo, Aitana [2 ]
Belkhir, Nabil [1 ]
Rubio, Fausto [2 ]
Chorfa, Abdellah [1 ]
Rubio, Juan [1 ]
机构
[1] Ferhat Abbas Univ, Inst Opt & Precis Mech, Lab Appl Opt, Setif 19000, Algeria
[2] CSIC, Inst Ceram & Glass, Madrid 28049, Spain
关键词
crystallization; Y2O3; multicomponent glasses; microstructure; surface and bulk crystals; OPTICAL-PROPERTIES; COOL ROOFS; BEHAVIOR; TILES;
D O I
10.3390/cryst14030214
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Multicomponent silicate glasses are crystallized by Y2O3 addition. Depending on the Y2O3 concentration, different crystalline phases evolve. In the absence of Y2O3, a multicomponent glass crystallizes as ZnSnO3, while with the addition of just 3% of this oxide, ZnSnO3 no longer crystallizes and ZrSiO4 appears instead. Different yttrium silicate crystals are formed in all glasses containing Y2O3, but, while alpha-Y2Si2O7 and beta-Y2Si2O7 are favored at low Y2O3 concentrations, the gamma-Y2Si2O7 and y-Y2Si2O7 phases are favored at the maximum Y2O3 content. At a 12% Y2O3 concentration, barium and calcium silicate crystalline phases also evolve. Interestingly, the crystalline phases appearing on the surface of the material present different microstructures compared to crystals developed in the bulk. While the crystallized surface presents a tabular-shape type, crystallization in the bulk is of a prismatic type at low Y2O3 concentrations and of a globular (spherical) type at higher concentrations. The main crystal size ranges between 0.85 and 0.75 micrometers, but most of the crystals coalesce to form larger superstructures depending on the Y2O3 concentrations.
引用
收藏
页数:17
相关论文
共 43 条
[1]   Crystallization of two rare-earth aluminosilicate glass-ceramics using conventional and microwave heat-treatments [J].
Ahmad, Sarfraz ;
Mahmoud, Morsi M. ;
Seifert, Hans Jurgen .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 797 :45-57
[2]   Role of tin as a reducing agent in iron containing heat absorbing soda-magnesia-lime-silica-glass [J].
Aman ;
Singh, SP .
BULLETIN OF MATERIALS SCIENCE, 2004, 27 (06) :537-541
[3]   Examining correlations between composition, structure and properties in zircon-containing raw glazes [J].
Atkinson, I. ;
Smith, M. E. ;
Zaharescu, M. .
CERAMICS INTERNATIONAL, 2012, 38 (03) :1827-1833
[4]   The structure of tin silicate glasses [J].
Bent, JF ;
Hannon, AC ;
Holland, D ;
Karim, MMA .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 232 :300-308
[5]   The effect of V2O5/MgO substitution on SiO2-Na2O-CaO-ZnO-MgO glass structure [J].
Colak, S. Cetinkaya .
OPTIK, 2022, 271
[6]   High barium content lead and alkaline-free glasses [J].
Da Silva, Maviael J. ;
Moya, Jose S. ;
Pecharroman, Carlos ;
Sanz, Jesus ;
Mello-Castanho, Sonia .
MATERIALS LETTERS, 2014, 136 :345-348
[7]  
Ehrt D., 2011, J MAT SCI ENG, VA 1, P312
[8]   Design of a cool color glaze for solar reflective tile application [J].
Ferrari, C. ;
Muscio, A. ;
Siligardi, C. ;
Manfredini, T. .
CERAMICS INTERNATIONAL, 2015, 41 (09) :11106-11116
[9]   Design of ceramic tiles with high solar reflectance through the development of a functional engobe [J].
Ferrari, Chiara ;
Libbra, Antonio ;
Muscio, Alberto ;
Siligardi, Cristina .
CERAMICS INTERNATIONAL, 2013, 39 (08) :9583-9590
[10]   Gahnite white colour glazes in ZnO-R2O-RO-Al2O3-SiO2 system [J].
Gajek, Marcin ;
Partyka, Janusz ;
Lesniak, Magdalena ;
Rapacz-Kmita, Alicja ;
Wojcik, Lukasz .
CERAMICS INTERNATIONAL, 2018, 44 (13) :15845-15850