Fractal Dimension of α-Fractal Functions Without Endpoint Conditions

被引:0
|
作者
Gurubachan [1 ]
Chandramouli, V. V. M. S. [1 ]
Verma, S. [2 ]
机构
[1] IIT Jodhpur, Dept Math, Jodhpur 342037, India
[2] IIIT Allahabad, Dept Appl Sci, Prayagraj 211015, India
关键词
Iterated function systems; alpha-fractal interpolation function; Hausdorff dimension; box dimension; Holder space; convex Lipschitz space; oscillation space; HAUSDORFF DIMENSION; INTERPOLATION;
D O I
10.1007/s00009-024-02610-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we manifest the existence of a new class of alpha-fractal functions without endpoint conditions in the space of continuous functions. Furthermore, we add the existence of the same class in numerous spaces such as the Holder space, the convex Lipschitz space, and the oscillation space. We also estimate the fractal dimensions of the graphs of the newly constructed alpha-fractal functions adopting some function spaces and covering methods.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Fractal dimension for fractal structures: A Hausdorff approach
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) : 1825 - 1837
  • [42] Fractal retraction and fractal dimension of dynamical manifold
    El-Ghoul, M
    El-Zhouny, H
    Abo-El-Fotooh, SI
    CHAOS SOLITONS & FRACTALS, 2003, 18 (01) : 187 - 192
  • [43] Counterexamples in theory of fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Nowak, Magdalena
    Sanchez-Granero, M. A.
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 210 - 223
  • [44] Fractal dimension and fractal growth of urbanized areas
    Shen, GQ
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2002, 16 (05) : 419 - 437
  • [45] Fractal dimension of α-fractal function on the Sierpinski Gasket
    Agrawal, Vishal
    Som, Tanmoy
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3781 - 3787
  • [46] A FRACTAL NETWORK MODEL WITH TUNABLE FRACTAL DIMENSION
    Yang, Lei
    Pei, Wenjiang
    Li, Tao
    Cao, Yanfei
    Shen, Yi
    Wang, Shaoping
    He, Zhenya
    2008 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 53 - 57
  • [47] Fractal Analysis and Fractal Dimension in Materials Chemistry
    Dobrescu, Gianina
    Papa, Florica
    State, Razvan
    FRACTAL AND FRACTIONAL, 2024, 8 (10)
  • [48] Graph fractal dimension and the structure of fractal networks
    Skums, Pavel
    Bunimovich, Leonid
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (04)
  • [49] Fourier dimension and fractal dimension
    Evans, AK
    CHAOS SOLITONS & FRACTALS, 1998, 9 (12) : 1977 - 1982
  • [50] Fractal Calculus on Fractal Interpolation Functions
    Gowrisankar, Arulprakash
    Khalili Golmankhaneh, Alireza
    Serpa, Cristina
    FRACTAL AND FRACTIONAL, 2021, 5 (04)