Fractal Dimension of α-Fractal Functions Without Endpoint Conditions

被引:0
|
作者
Gurubachan [1 ]
Chandramouli, V. V. M. S. [1 ]
Verma, S. [2 ]
机构
[1] IIT Jodhpur, Dept Math, Jodhpur 342037, India
[2] IIIT Allahabad, Dept Appl Sci, Prayagraj 211015, India
关键词
Iterated function systems; alpha-fractal interpolation function; Hausdorff dimension; box dimension; Holder space; convex Lipschitz space; oscillation space; HAUSDORFF DIMENSION; INTERPOLATION;
D O I
10.1007/s00009-024-02610-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we manifest the existence of a new class of alpha-fractal functions without endpoint conditions in the space of continuous functions. Furthermore, we add the existence of the same class in numerous spaces such as the Holder space, the convex Lipschitz space, and the oscillation space. We also estimate the fractal dimensions of the graphs of the newly constructed alpha-fractal functions adopting some function spaces and covering methods.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] The Fractal Dimension as a Measure of the Quality of Habitats
    A.R. Imre
    J. Bogaert
    Acta Biotheoretica, 2004, 52 : 41 - 56
  • [32] FRACTAL DIMENSION OF A SPECIAL CONTINUOUS FUNCTION
    Liu, Ning
    Yao, Kui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (04)
  • [33] FRACTAL DIMENSION VARIATION OF CONTINUOUS FUNCTIONS UNDER CERTAIN OPERATIONS
    Yu, Binyan
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (05)
  • [34] EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS
    Ruan, Huo-Jun
    Xiao, Jian-Ci
    Yang, Bing
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (02) : 278 - 290
  • [35] Dimensions of new fractal functions and associated measures
    Manuj Verma
    Amit Priyadarshi
    Numerical Algorithms, 2023, 94 : 817 - 846
  • [36] FRACTAL DIMENSION FOR A CLASS OF INHOMOGENEOUS GRAPH-DIRECTED ATTRACTORS
    Dubey, Shivam
    Verma, Saurabh
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [37] On the Hausdorff dimension of the Gieseking fractal
    Dicks, W
    Porti, J
    TOPOLOGY AND ITS APPLICATIONS, 2002, 126 (1-2) : 169 - 186
  • [38] Fractal dimension of coastline of Australia
    Husain, Akhlaq
    Reddy, Jaideep
    Bisht, Deepika
    Sajid, Mohammad
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [39] Spectal dimension of fractal sets
    Wilkinson, M.
    Kennard, H. R.
    Morgan, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (41)
  • [40] The Dimension of Projections of Fractal Percolations
    Michał Rams
    Károly Simon
    Journal of Statistical Physics, 2014, 154 : 633 - 655