Fractal Dimension of α-Fractal Functions Without Endpoint Conditions

被引:0
|
作者
Gurubachan [1 ]
Chandramouli, V. V. M. S. [1 ]
Verma, S. [2 ]
机构
[1] IIT Jodhpur, Dept Math, Jodhpur 342037, India
[2] IIIT Allahabad, Dept Appl Sci, Prayagraj 211015, India
关键词
Iterated function systems; alpha-fractal interpolation function; Hausdorff dimension; box dimension; Holder space; convex Lipschitz space; oscillation space; HAUSDORFF DIMENSION; INTERPOLATION;
D O I
10.1007/s00009-024-02610-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we manifest the existence of a new class of alpha-fractal functions without endpoint conditions in the space of continuous functions. Furthermore, we add the existence of the same class in numerous spaces such as the Holder space, the convex Lipschitz space, and the oscillation space. We also estimate the fractal dimensions of the graphs of the newly constructed alpha-fractal functions adopting some function spaces and covering methods.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] THE EXACT HAUSDORFF DIMENSION FOR A CLASS OF FRACTAL FUNCTIONS
    GIBERT, S
    MASSOPUST, PR
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (01) : 171 - 183
  • [22] Exact Hausdorff dimension for a class of fractal functions
    Gibert, Steve
    Massopust, Peter R.
    Journal of Mathematical Analysis and Applications, 1992, 168 (01)
  • [24] Fractal Dimension of Fractional Integral of Continuous Functions
    Du, Junhuai
    Xiao, Wei
    Liang, Yongshun
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 7838 - 7844
  • [25] Analysis of α-fractal functions without boundary point conditions on the Sierpinski gasket
    Gurubachan
    Chandramouli, V. V. M. S.
    Verma, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 486
  • [26] Effect of solidification conditions on fractal dimension of dendrites
    Genau, Amber L.
    Freedman, Alex C.
    Ratke, Lorenz
    JOURNAL OF CRYSTAL GROWTH, 2013, 363 : 49 - 54
  • [27] Fractal Dimension of Color Fractal Images
    Ivanovici, Mihai
    Richard, Noel
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (01) : 227 - 235
  • [28] Fractal dimension of semiconducting fractal sensors
    Danik, G
    Gorobets, NN
    Tolstaya, AA
    Timonyk, VA
    14th International Crimean Conference: Microwave & Telecommunication Technology, Conference Proceedings, 2004, : 570 - 571
  • [29] Fractal dimension estimators for a fractal process
    Morita, T
    Sato, K
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (03) : 631 - 637
  • [30] Box dimension of generalized affine fractal interpolation functions
    Jiang, Lai
    Ruan, Huo-Jun
    JOURNAL OF FRACTAL GEOMETRY, 2023, 10 (3-4) : 279 - 302