Improved bounds for the dimension of divisibility

被引:0
|
作者
Souza, Victor [1 ]
Versteegen, Leo [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat DPMMS, Wilberforce Rd, Cambridge CB3 0WA, England
关键词
SETS;
D O I
10.1016/j.ejc.2023.103912
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dimension of a partially-ordered set P is the smallest integer d such that one can embed P into a product of d linear orders. We prove that the dimension of the divisibility order on the interval {1, ... , n} is bounded above by C(log n)2(log log n)-2 log log log n as n goes to infinity. This improves a recent result by Lewis and the first author, who showed an upper bound of C(log n)2 (log log n)-1 and a lower bound of c(log n)2(log log n)-2, asymptotically. To obtain these bounds, we provide a refinement of a bound of Furedi and Kahn and exploit a connection between the dimension of the divisibility order and the maximum size of r-cover-free families. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A dichotomy for the dimension of SRB measure
    Ren, Haojie
    ADVANCES IN MATHEMATICS, 2024, 442
  • [42] ON HAUSDORFF DIMENSION AND TOPOLOGICAL ENTROPY
    Ma, Dongkui
    Wu, Min
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (03) : 363 - 370
  • [43] Univoque bases and Hausdorff dimension
    Kong, Derong
    Li, Wenxia
    Lu, Fan
    de Vries, Martijn
    MONATSHEFTE FUR MATHEMATIK, 2017, 184 (03): : 443 - 458
  • [44] MEASURE AND DIMENSION OF SUMS AND PRODUCTS
    Hambrook, Kyle
    Taylor, Krystal
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (09) : 3765 - 3780
  • [45] Equilateral dimension of the Heisenberg group
    Kim, J.
    Platis, I. D.
    GEOMETRIAE DEDICATA, 2023, 217 (04)
  • [46] DIMENSION THEORY OF FLOWS: A SURVEY
    Barreira, Luis
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3345 - 3362
  • [47] Surface measures in infinite dimension
    Da Prato, Giuseppe
    Lunardi, Alessandra
    Tubaro, Luciano
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2014, 25 (03) : 309 - 330
  • [48] ADDITIVE DIMENSION AND A THEOREM OF SANDERS
    Schoen, Tomasz
    Shkredov, Ilya D.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 100 (01) : 124 - 144
  • [49] Covering dimension and finite spaces
    Georgiou, D. N.
    Megaritis, A. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (07) : 3122 - 3130
  • [50] Fractal Percolation, Porosity, and Dimension
    Chen, Changhao
    Ojala, Tuomo
    Rossi, Eino
    Suomala, Ville
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (04) : 1471 - 1498