Molecular surface programming of rectifying junctions between InAs colloidal quantum dot solids

被引:14
作者
Vafaie, Maral [1 ]
Najarian, Amin Morteza [1 ]
Xu, Jian [1 ]
Richter, Lee J. [2 ]
Li, Ruipeng [3 ]
Zhang, Yangning [1 ]
Imran, Muhammad [1 ]
Xia, Pan [1 ]
Ban, Hyeong Woo [1 ]
Levina, Larissa [1 ]
Singh, Ajay [4 ]
Meitzner, Jet [4 ]
Pattantyus-Abraham, Andras G. [4 ]
Garcia de Arquer, F. Pelayo [5 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] Natl Inst Stand & Technol, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, New York, NY 11973 USA
[4] STMicroelectronics, Digital Front End Mfg & Technol Technol Opt Sen, Fremont, CA 94538 USA
[5] Barcelona Inst Sci & Technol, Inst Ciencies Foton, Barcelona 08860, Spain
关键词
infrared photodetectors; heavy-metal-free colloidal quantum dots; III-V nanocrystals; molecular functionalization; energy level modification; NANOCRYSTALS;
D O I
10.1073/pnas.2305327120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers. This occurred when increasing CQD diameter to decrease the bandgap below 1.1 eV. Here, we develop a rectifying junction among InAs CQD layers, where we use molecular surface modifiers to tune the energy levels of InAs CQDs electrostatically. Previously developed bifunctional dithiol ligands, established for II-VI and IV-VI CQDs, exhibit slow reaction kinetics with III-V surfaces, causing the exchange to fail. We study carboxylate and thiolate binding groups, united with electron-donating free end groups, that shift upward the valence bandedge of InAs CQDs, producing valence band energies as shallow as 4.8 eV. Photophysical studies combined with density functional theory show that carboxylate-based passivants participate in strong bidentate bridging with both In and As on the CQD surface. The tuned CQD layer incorporated into a photodiode structure achieves improved performance with EQE (external quantum efficiency) of 35% (>1 mu m) and dark current density < 400 nA cm(-2), a >25% increase in EQE and >90% reduced dark current density compared to the reference device. This work represents an advance over previous III-V CQD short-wavelength IR photodetectors (EQE < 5%, dark current > 10,000 nA cm(-2)).
引用
收藏
页数:7
相关论文
共 39 条
[31]   Fast Near-Infrared Photodetection Using III-V Colloidal Quantum Dots [J].
Sun, Bin ;
Najarian, Amin Morteza ;
Sagar, Laxmi Kishore ;
Biondi, Margherita ;
Choi, Min-Jae ;
Li, Xiyan ;
Levina, Larissa ;
Baek, Se-Woong ;
Zheng, Chao ;
Lee, Seungjin ;
Kirmani, Ahmad R. ;
Sabatini, Randy ;
Abed, Jehad ;
Liu, Mengxia ;
Vafaie, Maral ;
Li, Peicheng ;
Richter, Lee J. ;
Voznyy, Oleksandr ;
Chekini, Mahshid ;
Lu, Zheng-Hong ;
de Arquer, F. Pelayo Garcia ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2022, 34 (33)
[32]   Stable reconstruction and adsorbates of InAs(111)A surface [J].
Taguchi, A ;
Kanisawa, K .
APPLIED SURFACE SCIENCE, 2006, 252 (15) :5263-5266
[33]   Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications [J].
Talapin, Dmitri V. ;
Lee, Jong-Soo ;
Kovalenko, Maksym V. ;
Shevchenko, Elena V. .
CHEMICAL REVIEWS, 2010, 110 (01) :389-458
[34]   Quantum Junction Solar Cells [J].
Tang, Jiang ;
Liu, Huan ;
Zhitomirsky, David ;
Hoogland, Sjoerd ;
Wang, Xihua ;
Furukawa, Melissa ;
Levina, Larissa ;
Sargent, Edward H. .
NANO LETTERS, 2012, 12 (09) :4889-4894
[35]   2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids [J].
Xu, Jixian ;
Voznyy, Oleksandr ;
Liu, Mengxia ;
Kirmani, Ahmad R. ;
Walters, Grant ;
Munir, Rahim ;
Abdelsamie, Maged ;
Proppe, Andrew H. ;
Sarkar, Amrita ;
de Arquer, F. Pelayo Garcia ;
Wei, Mingyang ;
Sun, Bin ;
Liu, Min ;
Ouellette, Olivier ;
Quintero-Bermudez, Rafael ;
Li, Jie ;
Fan, James ;
Quan, Lina ;
Todorovic, Petar ;
Tan, Hairen ;
Hoogland, Sjoerd ;
Kelley, Shana O. ;
Stefik, Morgan ;
Amassian, Aram ;
Sargent, Edward H. .
NATURE NANOTECHNOLOGY, 2018, 13 (06) :456-+
[36]   Inorganic CsPbI3 Perovskite Coating on PbS Quantum Dot for Highly Efficient and Stable Infrared Light Converting Solar Cells [J].
Zhang, Xiaoliang ;
Zhang, Jindan ;
Phuyal, Dibya ;
Du, Juan ;
Tian, Lei ;
Oberg, Viktor A. ;
Johansson, Malin B. ;
Cappel, Ute B. ;
Karis, Olof ;
Liu, Jianhua ;
Rensmo, Hakan ;
Boschloo, Gerrit ;
Johansson, Erik M. J. .
ADVANCED ENERGY MATERIALS, 2018, 8 (06)
[37]   Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces [J].
Zhang, Zhen ;
Yates, John T., Jr. .
CHEMICAL REVIEWS, 2012, 112 (10) :5520-5551
[38]   Towards controlled synthesis and better understanding of highly luminescent PbS/CdS core/shell quantum dots [J].
Zhao, Haiguang ;
Chaker, Mohamed ;
Wu, Nianqiang ;
Ma, Dongling .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (24) :8898-8904
[39]   Electronic Structure Origins of Surface-Dependent Growth in III-V Quantum Dots [J].
Zhao, Qing ;
Kulik, Heather J. .
CHEMISTRY OF MATERIALS, 2018, 30 (20) :7154-7165