Molecular surface programming of rectifying junctions between InAs colloidal quantum dot solids

被引:14
作者
Vafaie, Maral [1 ]
Najarian, Amin Morteza [1 ]
Xu, Jian [1 ]
Richter, Lee J. [2 ]
Li, Ruipeng [3 ]
Zhang, Yangning [1 ]
Imran, Muhammad [1 ]
Xia, Pan [1 ]
Ban, Hyeong Woo [1 ]
Levina, Larissa [1 ]
Singh, Ajay [4 ]
Meitzner, Jet [4 ]
Pattantyus-Abraham, Andras G. [4 ]
Garcia de Arquer, F. Pelayo [5 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] Natl Inst Stand & Technol, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[3] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, New York, NY 11973 USA
[4] STMicroelectronics, Digital Front End Mfg & Technol Technol Opt Sen, Fremont, CA 94538 USA
[5] Barcelona Inst Sci & Technol, Inst Ciencies Foton, Barcelona 08860, Spain
关键词
infrared photodetectors; heavy-metal-free colloidal quantum dots; III-V nanocrystals; molecular functionalization; energy level modification; NANOCRYSTALS;
D O I
10.1073/pnas.2305327120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers. This occurred when increasing CQD diameter to decrease the bandgap below 1.1 eV. Here, we develop a rectifying junction among InAs CQD layers, where we use molecular surface modifiers to tune the energy levels of InAs CQDs electrostatically. Previously developed bifunctional dithiol ligands, established for II-VI and IV-VI CQDs, exhibit slow reaction kinetics with III-V surfaces, causing the exchange to fail. We study carboxylate and thiolate binding groups, united with electron-donating free end groups, that shift upward the valence bandedge of InAs CQDs, producing valence band energies as shallow as 4.8 eV. Photophysical studies combined with density functional theory show that carboxylate-based passivants participate in strong bidentate bridging with both In and As on the CQD surface. The tuned CQD layer incorporated into a photodiode structure achieves improved performance with EQE (external quantum efficiency) of 35% (>1 mu m) and dark current density < 400 nA cm(-2), a >25% increase in EQE and >90% reduced dark current density compared to the reference device. This work represents an advance over previous III-V CQD short-wavelength IR photodetectors (EQE < 5%, dark current > 10,000 nA cm(-2)).
引用
收藏
页数:7
相关论文
共 39 条
[1]   Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency [J].
Ahmad, Wagar ;
He, Jungang ;
Liu, Zhitian ;
Xu, Ke ;
Chen, Zhuang ;
Yang, Xiaokun ;
Li, Dengbing ;
Xia, Yong ;
Zhang, Jianbing ;
Chen, Chao .
ADVANCED MATERIALS, 2019, 31 (33)
[2]   High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange [J].
Aqoma, Havid ;
Al Mubarok, Muhibullah ;
Hadmojo, Wisnu Tantyo ;
Lee, Eun-Hye ;
Kim, Tae-Wook ;
Ahn, Tae Kyu ;
Oh, Seung-Hwan ;
Jang, Sung-Yeon .
ADVANCED MATERIALS, 2017, 29 (19)
[3]   Zn-Doped P-Type InAs Nanocrystal Quantum Dots [J].
Asor, Lior ;
Liu, Jing ;
Xiang, Shuting ;
Tessler, Nir ;
Frenkel, Anatoly I. ;
Banin, Uri .
ADVANCED MATERIALS, 2023, 35 (05)
[4]   InAs Nanocrystals with Robust p-Type Doping [J].
Asor, Lior ;
Liu, Jing ;
Ossia, Yonatan ;
Tripathi, Durgesh C. ;
Tessler, Nir ;
Frenkel, Anatoly, I ;
Banin, Uri .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (06)
[5]  
Augustoni A. L, 2004, SAND2004-1111
[6]   Improved Current Extraction from ZnO/PbS Quantum Dot Heterojunction Photovoltaics Using a MoO3 Interfacial Layer [J].
Brown, Patrick R. ;
Lunt, Richard R. ;
Zhao, Ni ;
Osedach, Timothy P. ;
Wanger, Darcy D. ;
Chang, Liang-Yi ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
NANO LETTERS, 2011, 11 (07) :2955-2961
[7]   Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III-V Colloidal Quantum Dots [J].
Choi, Min-Jae ;
Sagar, Laxmi Kishore ;
Sun, Bin ;
Biondi, Margherita ;
Lee, Seungjin ;
Najjariyan, Amin Morteza ;
Levina, Larissa ;
de Arquer, F. Pelayo Garcia ;
Sargent, Edward H. .
NANO LETTERS, 2021, 21 (14) :6057-6063
[8]  
Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/NMAT3984, 10.1038/nmat3984]
[9]   Surface Chemistry of InP Quantum Dots: A Comprehensive Study [J].
Cros-Gagneux, Arnaud ;
Delpech, Fabien ;
Nayral, Celine ;
Cornejo, Alfonso ;
Coppel, Yannick ;
Chaudret, Bruno .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (51) :18147-18157
[10]   Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO3 hole-transport layer [J].
Elumalai, Naveen Kumar ;
Saha, Amitaksha ;
Vijila, Chellappan ;
Jose, Rajan ;
Jie, Zhang ;
Ramakrishna, Seeram .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (18) :6831-6841