Rule-Based Detection of Anomalous Patterns in Device Behavior for Explainable IoT Security

被引:2
作者
Costa, Gianni [1 ]
Forestiero, Agostino [1 ]
Ortale, Riccardo [1 ]
机构
[1] CNR, Inst High Performance Comp & Networking, I-87036 Arcavacata Di Rende, Italy
关键词
Anomaly detection; behavioral patterns; explainable machine learning; Internet of Things; NETWORKS; INTERNET; SYSTEMS; THINGS;
D O I
10.1109/TSC.2023.3327822
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The behavioral analysis of smart devices plays a key role in enforcing security for IoT environments. In particular, anomalous patterns can be targeted in the behavior of smart devices as potential IoT cybersecurity threats. In this article, an explainable machine-learning approach is proposed for dealing with behavioral anomalies. Essentially, a rule-based classifier is inferred from the observed behavior of smart devices, to detect and explain patterns of behavioral anomalies. Predictive association modeling is adopted in the formulation of the classifier, to achieve superior effectiveness in detecting behavioral patterns and ensuring clear explanations of both these latter and their classifications. Moreover, the specifically-conceived design of the classifier reduces the number of tunable parameters to one. An extensive empirical evaluation is comparatively carried out on real-world benchmark data. The experimental results reveal the effectiveness, robustness, and scalability of the proposed approach.
引用
收藏
页码:4514 / 4525
页数:12
相关论文
共 66 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]  
Agrawal R., 1994, P 20 VLDB C SANT CHI, P1
[3]   Machine learning approaches to IoT security: A systematic literature review [J].
Ahmad, Rasheed ;
Alsmadi, Izzat .
INTERNET OF THINGS, 2021, 14
[4]   A survey of network anomaly detection techniques [J].
Ahmed, Mohiuddin ;
Mahmood, Abdun Naser ;
Hu, Jiankun .
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2016, 60 :19-31
[5]  
Antonie Maria-Luiza., 2004, 9 ACM SIGMOD WORTEHO, P64
[6]  
Arunasalam B., 2006, PROC ACM SIGKDD INT, P517
[7]   Interpretable Machine Learning Models for Malicious Domains Detection Using Explainable Artificial Intelligence (XAI) [J].
Aslam, Nida ;
Khan, Irfan Ullah ;
Mirza, Samiha ;
AlOwayed, Alanoud ;
Anis, Fatima M. ;
Aljuaid, Reef M. ;
Baageel, Reham .
SUSTAINABILITY, 2022, 14 (12)
[8]   A survey on IoT platforms: Communication, security, and privacy perspectives [J].
Babun, Leonardo ;
Denney, Kyle ;
Celik, Z. Berkay ;
McDaniel, Patrick ;
Uluagac, A. Selcuk .
COMPUTER NETWORKS, 2021, 192
[9]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[10]   Network Anomaly Detection: Methods, Systems and Tools [J].
Bhuyan, Monowar H. ;
Bhattacharyya, D. K. ;
Kalita, J. K. .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2014, 16 (01) :303-336