Lifetime Improvement Method for Memristor-Based Hyperdimensional Computing Accelerator

被引:0
|
作者
Iwasaki, Tetsuro [1 ]
Shintani, Michihiro [1 ]
机构
[1] Kyoto Inst Technol, Grad Sch Sci & Technol, Matsugasaki,Sakyo Ku, Kyoto 6068585, Japan
来源
2023 IEEE INTERNATIONAL MEETING FOR FUTURE OF ELECTRON DEVICES, KANSAI, IMFEDK | 2023年
关键词
Hyperdimensional computing; Memristor; Dependability-aware design; Built-in self repair;
D O I
10.1109/IMFEDK60983.2023.10366339
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study proposes a lifetime extension method for a hyperdimensional computing (HDC) inference accelerator implemented with memristors using error detection and self-repair techniques. The proposed method detects faulty memristors by calculating the sum of the memory values of memristors that store hypervectors in the HDC as a checksum and replacing the failed memristors with redundant memristors, thereby extending the lifetime of the HDC inference. When a memristor fails, the resistance is stacked at the minimum or maximum. This causes the checksum value to change when a failure occurs, which can be detected by comparison with the correct summed value. A numerical evaluation with a language-comparison task shows that the lifetime can be extended by five times while maintaining the same accuracy as in the case where no lifetime extension method is applied.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Memristor-Based Approximate Query Architecture for In-Memory Hyperdimensional Computing
    Yu, Tianyang
    Wu, Bi
    Chen, Ke
    Zhang, Gong
    Liu, Weiqiang
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (11) : 2605 - 2618
  • [2] Memristor-Based Hardware Accelerator for Image Compression
    Halawani, Yasmin
    Mohammad, Baker
    Al-Qutayri, Mahmoud
    Al-Sarawi, Said F.
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26 (12) : 2749 - 2758
  • [3] Memristor-based signal processing for edge computing
    Zhao, Han
    Liu, Zhengwu
    Tang, Jianshi
    Gao, Bin
    Zhang, Yufeng
    Qian, He
    Wu, Huaqiang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2022, 27 (03) : 455 - 471
  • [4] Memristor-based Synapses and Neurons for Neuromorphic Computing
    Zheng, Le
    Shin, Sangho
    Kang, Sung-Mo Steve
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1150 - 1153
  • [5] Tutorial on memristor-based computing for smart edge applications
    Gebregiorgis, Anteneh
    Singh, Abhairaj
    Yousefzadeh, Amirreza
    Wouters, Dirk
    Bishnoi, Rajendra
    Catthoor, Francky
    Hamdioui, Said
    Memories - Materials, Devices, Circuits and Systems, 2023, 4
  • [6] Ameliorate Performance of Memristor-Based ANNs in Edge Computing
    Liao, Zhiheng
    Fu, Jingyan
    Wang, Jinhui
    IEEE TRANSACTIONS ON COMPUTERS, 2021, 70 (08) : 1299 - 1310
  • [7] An Efficient Programming Framework for Memristor-based Neuromorphic Computing
    Li Zhang, Grace
    Li, Bing
    Huang, Xing
    Shen, Chen
    Zhang, Shuhang
    Burcea, Florin
    Graeb, Helmut
    Ho, Tsung-Yi
    Li, Hai
    Schlichtmann, Ulf
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1068 - 1073
  • [8] A Heterogeneous Computing System with Memristor-Based Neuromorphic Accelerators
    Liu, Xiaoxiao
    Mao, Mengjie
    Li, Hai
    Chen, Yiran
    Jiang, Hao
    Yang, J. Joshua
    Wu, Qing
    Barnell, Mark
    2014 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2014,
  • [9] A Simulation Framework for Memristor-Based Heterogeneous Computing Architectures
    Liu, Haikun
    Xu, Jiahong
    Liao, Xiaofei
    Jin, Hai
    Zhang, Yu
    Mao, Fubing
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (12) : 5476 - 5488
  • [10] A General Purpose Hyperdimensional Computing Accelerator for Edge Computing
    Asghari, Mohsen
    Le Beux, Sebastien
    2024 22ND IEEE INTERREGIONAL NEWCAS CONFERENCE, NEWCAS 2024, 2024, : 383 - 387