Optimal quinary cyclic codes with three zeros

被引:0
作者
Wu, Tingting [1 ,2 ]
Zhu, Shixin [1 ,2 ]
Liu, Li [1 ,2 ]
Li, Lanqiang [3 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
[2] Intelligent Interconnected Syst Lab Anhui Prov, Hefei, Peoples R China
[3] Anhui Agr Univ, Sch Informat & Artificial Intelligence, Hefei 230036, Anhui, Peoples R China
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2024年 / 16卷 / 04期
基金
中国国家自然科学基金;
关键词
Cyclic code; Optimal code; Minimum distance; Weight distribution; MINIMUM DISTANCE; WEIGHT DISTRIBUTIONS;
D O I
10.1007/s12095-024-00703-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cyclic codes are an important subclass of linear codes, they not only have good algebraic structure, but also are easy to be encoded and decoded. At present, researchers have constructed many optimal ternary cyclic codes, but the study on quinary cyclic codes is less developed. In this paper, by analyzing the solutions of certain equations over F5m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{5<^>m}$$\end{document}, we construct some optimal quinary cyclic codes with three zeros and with parameters [5m-1,5m-2-2m,4]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[5<^>m-1, 5<^>m-2-2m, 4]$$\end{document}, [5m-1,5m-2-3m2,4]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[5<^>m-1, 5<^>m-2-\frac{3m}{2}, 4]$$\end{document}. Moreover, the weight distributions of two classes of their duals are also provided.
引用
收藏
页码:801 / 823
页数:23
相关论文
共 50 条
[21]   The weight enumerator of the duals of a class of cyclic codes with three zeros [J].
Yang, Shudi ;
Yao, Zheng-An ;
Zhao, Chang-An .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2015, 26 (04) :347-367
[22]   A class of cyclic codes whose duals have five zeros [J].
Liu, Yan ;
Liu, Chunlei .
DESIGNS CODES AND CRYPTOGRAPHY, 2016, 81 (02) :225-238
[23]   A Family of q-Ary Cyclic Codes with Optimal Parameters [J].
Zhang, Wenhua ;
Zhang, Shidong ;
Wang, Yong ;
Wang, Jianpeng .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (03) :631-633
[24]   Some 3-designs and shortened codes from binary cyclic codes with three zeros [J].
Xiang, Can ;
Tang, Chunming .
FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
[25]   Optimal Cyclic Codes With Generalized Niho-Type Zeros and the Weight Distribution [J].
Xiong, Maosheng ;
Li, Nian .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (09) :4914-4922
[26]   A class of optimal ternary cyclic codes and their duals [J].
Fan, Cuiling ;
Li, Nian ;
Zhou, Zhengchun .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 :193-202
[27]   OPTIMAL QUINARY NEGACYCLIC CODES WITH MINIMUM DISTANCE FOUR [J].
Fan, Jinmei ;
Zhang, Yanhai .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (05) :1139-1153
[28]   A family of optimal ternary cyclic codes from the Niho-type exponent [J].
Yan, Haode ;
Zhou, Zhengchun ;
Du, Xiaoni .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 :101-112
[29]   On some conjectures about optimal ternary cyclic codes [J].
Liu, Yan ;
Cao, Xiwang ;
Lu, Wei .
DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (02) :297-309
[30]   A class of cyclic codes whose duals have five zeros [J].
Yan Liu ;
Chunlei Liu .
Designs, Codes and Cryptography, 2016, 81 :225-238