Critical view on oligo(dT)-based RNA-seq: bias arising, modeling, and mitigating

被引:0
作者
Su, Qiang [1 ]
Wang, Jun [1 ]
Kang, Kang [2 ]
Niu, Yanqin [1 ]
Li, Shujin [1 ]
Gou, Deming [1 ,3 ]
机构
[1] Shenzhen Univ, Shenzhen Key Lab Microbial Genet Engn, Guangdong Prov Key Lab Reg Immun & Dis, Coll Life Sci & Oceanog,Vasc Dis Res Ctr, Shenzhen 518055, Guangdong, Peoples R China
[2] Shenzhen Univ, Carson Int Canc Ctr, Guangdong Prov Key Lab Reg Immun & Dis, Hlth Sci Ctr,Dept Biochem & Mol Biol, Shenzhen 518060, Guangdong, Peoples R China
[3] Shenzhen Univ, 1066 Xueyuan St, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
RNA-seq; poly(A)-tail length bias; fixed-position GC bias; and poly(A)-tailed transcript; MESSENGER-RNA; SINGLE; CELLS; ALIGNMENT; READS;
D O I
10.1093/genetics/iyad190
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The precise biological interpretation of oligo(dT)-based RNA sequencing (RNA-seq) datasets, particularly in single-cell RNA-seq (scRNA-seq), is invaluable for understanding complex biological systems. However, the presence of biases can lead to misleading results in downstream analysis. This study has now identified two additional biases that are not accounted for in established bias models: poly(A)-tail length bias and fixed-position GC-content bias. These biases have a significant negative impact on the overall quality of oligo(dT)-based RNA-seq data. To address these biases, we have developed a universal bias-mitigating method based on the lower-affinity binding of short and nonanchored oligo(dT) primers to poly(A) tails. This method significantly reduces poly(A) length bias and completely eliminates fixed-position GC bias. Furthermore, the use of short oligo(dT) with impartial binding behavior toward the diverse poly(A) tails renders RNA-seq with more reliable measurements. The findings of this study are particularly beneficial for scRNA-seq datasets, where accurate benchmarking is critical.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Comparative analysis of RNA sequencing methods for degraded or low-input samples [J].
Adiconis, Xian ;
Borges-Rivera, Diego ;
Satija, Rahul ;
DeLuca, David S. ;
Busby, Michele A. ;
Berlin, Aaron M. ;
Sivachenko, Andrey ;
Thompson, Dawn Anne ;
Wysoker, Alec ;
Fennell, Timothy ;
Gnirke, Andreas ;
Pochet, Nathalie ;
Regev, Aviv ;
Levin, Joshua Z. .
NATURE METHODS, 2013, 10 (07) :623-+
[2]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[3]   BCseq: accurate single cell RNA-seq quantification with bias correction [J].
Chen, Liang ;
Zheng, Sika .
NUCLEIC ACIDS RESEARCH, 2018, 46 (14)
[4]   A multicenter study benchmarking single-cell RNA sequencing technologies using reference samples [J].
Chen, Wanqiu ;
Zhao, Yongmei ;
Chen, Xin ;
Yang, Zhaowei ;
Xu, Xiaojiang ;
Bi, Yingtao ;
Chen, Vicky ;
Li, Jing ;
Choi, Hannah ;
Ernest, Ben ;
Tran, Bao ;
Mehta, Monika ;
Kumar, Parimal ;
Farmer, Andrew ;
Mir, Alain ;
Mehra, Urvashi Ann ;
Li, Jian-Liang ;
Moos, Malcolm, Jr. ;
Xiao, Wenming ;
Wang, Charles .
NATURE BIOTECHNOLOGY, 2021, 39 (09) :1103-+
[5]  
Duo Angelo, 2018, F1000Res, V7, P1141, DOI 10.12688/f1000research.15666.3
[6]   Synthetic evolutionary origin of a proofreading reverse transcriptase [J].
Ellefson, Jared W. ;
Gollihar, Jimmy ;
Shroff, Raghav ;
Shivram, Haridha ;
Iyer, Vishwanath R. ;
Ellington, Andrew D. .
SCIENCE, 2016, 352 (6293) :1590-1593
[7]   CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification [J].
Hashimshony, Tamar ;
Wagner, Florian ;
Sher, Noa ;
Yanai, Itai .
CELL REPORTS, 2012, 2 (03) :666-673
[8]   Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types [J].
Jaitin, Diego Adhemar ;
Kenigsberg, Ephraim ;
Keren-Shaul, Hadas ;
Elefant, Naama ;
Paul, Franziska ;
Zaretsky, Irina ;
Mildner, Alexander ;
Cohen, Nadav ;
Jung, Steffen ;
Tanay, Amos ;
Amit, Ido .
SCIENCE, 2014, 343 (6172) :776-779
[9]   cutPrimers: A New Tool for Accurate Cutting of Primers from Reads of Targeted Next Generation Sequencing [J].
Kechin, Andrey ;
Boyarskikh, Uljana ;
Kel, Alexander ;
Filipenko, Maxim .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (11) :1138-1143
[10]   Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype [J].
Kim, Daehwan ;
Paggi, Joseph M. ;
Park, Chanhee ;
Bennett, Christopher ;
Salzberg, Steven L. .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :907-+