Dispersion Characteristics and Applications of Higher Order Isosceles Triangular Meshes in the Finite Element Method

被引:1
作者
Niu, Yuhua [1 ,2 ]
Liu, Jinbo [1 ,2 ]
Luo, Wen [3 ]
Li, Zengrui [1 ,2 ]
Song, Jiming [1 ,2 ,4 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
[2] Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China
[3] Guizhou Normal Univ, Sch Phys & Elect Sci, Guiyang 550025, Peoples R China
[4] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
来源
IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION | 2023年 / 4卷
基金
中国国家自然科学基金;
关键词
Finite element analysis; Dispersion; Interpolation; Mathematical models; Transmission line matrix methods; Rectangular waveguides; Propagation; Dispersion error; equilateral triangular meshes; finite element method (FEM); isosceles triangular meshes; squares; NUMERICAL DISPERSION; NODAL ELEMENTS; DISCRETIZATION; EQUATIONS;
D O I
10.1109/OJAP.2023.3331217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mesh division plays an important role in applications of the finite element method (FEM). The proposed research shows that under the same order, the equilateral triangular meshes have the most uniform dispersion distribution. The isosceles triangles with equal base and height have more uniform dispersion error than the square meshes, while the maximum phase error is similar. Taking the rectangular waveguide as an example, the relative errors in the cut-off frequency are analyzed based on different meshes. The numerical results show that under the same interpolation order and node numbers, the relative error of isosceles triangles with equal base and height for TE10 mode is the smallest. The results are useful in choosing appropriate element order, node density and mesh shape when applying FEM.
引用
收藏
页码:1171 / 1175
页数:5
相关论文
共 50 条
[41]   A higher-order quadrilateral shell finite element for geometrically nonlinear analysis [J].
Trinh, Minh-Chien ;
Jun, Hyungmin .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 89 (89)
[42]   Automatic finite element formulation and assembly of hyperelastic higher order structural models [J].
Ramabathiran, Amuthan Arunkumar ;
Gopalakrishnan, S. .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (11-12) :2867-2883
[43]   An adaptive high-order unfitted finite element method for elliptic interface problems [J].
Chen, Zhiming ;
Li, Ke ;
Xiang, Xueshuang .
NUMERISCHE MATHEMATIK, 2021, 149 (03) :507-548
[44]   Higher order multipoint flux mixed finite element methods on quadrilaterals and hexahedra [J].
Ambartsumyan, Ilona ;
Khattatov, Eldar ;
Lee, Jeonghun J. ;
Yotov, Ivan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (06) :1037-1077
[45]   Kronecker product-based solvers for higher-order finite element method Navier-Stokes simulations [J].
Sluzalec, Tomasz ;
Los, Marcin ;
Dobija, Mateusz ;
Paszynski, Maciej .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2025, 73 (04)
[46]   Quadratic Finite Volume Element Schemes over Triangular Meshes for a Nonlinear Time-Fractional Rayleigh-Stokes Problem [J].
Zhang, Yanlong ;
Zhou, Yanhui ;
Wu, Jiming .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (02) :487-514
[47]   Approximation of the Stokes eigenvalue problem on triangular domains using a stabilized finite element method [J].
Turk, Onder .
MECCANICA, 2020, 55 (10) :2021-2031
[48]   Parallel discontinuous Galerkin finite element method for computing hyperbolic conservation law on unstructured meshes [J].
Duan, Zhijian ;
Xie, Gongnan .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (05) :1410-1431
[49]   Rotation-free triangular shell element using node-based smoothed finite element method [J].
Choi, J. H. ;
Lee, B. C. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (06) :359-379
[50]   A FINITE ELEMENT METHOD FOR HYPERBOLIC METAMATERIALS WITH APPLICATIONS FOR HYPERLENS\ast [J].
Liu, Fuhao ;
Yang, Wei ;
Li, Jichun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (03) :1420-1442