Dispersion Characteristics and Applications of Higher Order Isosceles Triangular Meshes in the Finite Element Method

被引:1
作者
Niu, Yuhua [1 ,2 ]
Liu, Jinbo [1 ,2 ]
Luo, Wen [3 ]
Li, Zengrui [1 ,2 ]
Song, Jiming [1 ,2 ,4 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
[2] Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China
[3] Guizhou Normal Univ, Sch Phys & Elect Sci, Guiyang 550025, Peoples R China
[4] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
来源
IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION | 2023年 / 4卷
基金
中国国家自然科学基金;
关键词
Finite element analysis; Dispersion; Interpolation; Mathematical models; Transmission line matrix methods; Rectangular waveguides; Propagation; Dispersion error; equilateral triangular meshes; finite element method (FEM); isosceles triangular meshes; squares; NUMERICAL DISPERSION; NODAL ELEMENTS; DISCRETIZATION; EQUATIONS;
D O I
10.1109/OJAP.2023.3331217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mesh division plays an important role in applications of the finite element method (FEM). The proposed research shows that under the same order, the equilateral triangular meshes have the most uniform dispersion distribution. The isosceles triangles with equal base and height have more uniform dispersion error than the square meshes, while the maximum phase error is similar. Taking the rectangular waveguide as an example, the relative errors in the cut-off frequency are analyzed based on different meshes. The numerical results show that under the same interpolation order and node numbers, the relative error of isosceles triangles with equal base and height for TE10 mode is the smallest. The results are useful in choosing appropriate element order, node density and mesh shape when applying FEM.
引用
收藏
页码:1171 / 1175
页数:5
相关论文
共 50 条
[21]   Determination of NSIFs and coefficients of higher order terms for sharp notches using finite element method [J].
Ayatollahi, M. R. ;
Nejati, M. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2011, 53 (03) :164-177
[22]   A high-order numerical manifold method with nine-node triangular meshes [J].
Fan, Huo ;
He, Siming ;
Jiang, Zhongming .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 61 :172-182
[23]   CONDITIONING OF THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION PROBLEMS WITH GENERAL SIMPLICIAL MESHES [J].
Wang, Xiang ;
Huang, Weizhang ;
Li, Yonghai .
MATHEMATICS OF COMPUTATION, 2019, 88 (320) :2665-2696
[24]   The penalty boundary method for combining meshes and solid models in finite element analysis [J].
Clark, BW ;
Anderson, DC .
ENGINEERING COMPUTATIONS, 2003, 20 (3-4) :344-365
[25]   An interface penalty finite element method for elliptic interface problems on piecewise meshes [J].
He, Xiaoxiao ;
Deng, Weibing ;
Wu, Haijun .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
[26]   Higher-order galerkin finite element method for nonlinear coupled reaction-diffusion models [J].
Devi, Anisha ;
Yadav, Om Prakash .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2025, 86 (06) :1932-1956
[27]   A triangular finite element using Laplace transform for viscoelastic laminated composite plates based on efficient higher-order zigzag theory [J].
Sy-Ngoc Nguyen ;
Lee, Jaehun ;
Cho, Maenghyo .
COMPOSITE STRUCTURES, 2016, 155 :223-244
[28]   New higher-order triangular shell finite elements based on the partition of unity [J].
Jun, Hyungmin .
STRUCTURAL ENGINEERING AND MECHANICS, 2020, 73 (01) :1-16
[29]   Dispersion error reduction for acoustic problems using the smoothed finite element method (SFEM) [J].
Yao, Lingyun ;
Li, Yunwu ;
Li, Li .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 80 (06) :343-357
[30]   The computation of dispersion relations for axisymmetric waveguides using the Scaled Boundary Finite Element Method [J].
Gravenkamp, Hauke ;
Birk, Carolin ;
Song, Chongmin .
ULTRASONICS, 2014, 54 (05) :1373-1385