Dispersion Characteristics and Applications of Higher Order Isosceles Triangular Meshes in the Finite Element Method

被引:0
作者
Niu, Yuhua [1 ,2 ]
Liu, Jinbo [1 ,2 ]
Luo, Wen [3 ]
Li, Zengrui [1 ,2 ]
Song, Jiming [1 ,2 ,4 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
[2] Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China
[3] Guizhou Normal Univ, Sch Phys & Elect Sci, Guiyang 550025, Peoples R China
[4] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
来源
IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION | 2023年 / 4卷
基金
中国国家自然科学基金;
关键词
Finite element analysis; Dispersion; Interpolation; Mathematical models; Transmission line matrix methods; Rectangular waveguides; Propagation; Dispersion error; equilateral triangular meshes; finite element method (FEM); isosceles triangular meshes; squares; NUMERICAL DISPERSION; NODAL ELEMENTS; DISCRETIZATION; EQUATIONS;
D O I
10.1109/OJAP.2023.3331217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mesh division plays an important role in applications of the finite element method (FEM). The proposed research shows that under the same order, the equilateral triangular meshes have the most uniform dispersion distribution. The isosceles triangles with equal base and height have more uniform dispersion error than the square meshes, while the maximum phase error is similar. Taking the rectangular waveguide as an example, the relative errors in the cut-off frequency are analyzed based on different meshes. The numerical results show that under the same interpolation order and node numbers, the relative error of isosceles triangles with equal base and height for TE10 mode is the smallest. The results are useful in choosing appropriate element order, node density and mesh shape when applying FEM.
引用
收藏
页码:1171 / 1175
页数:5
相关论文
共 50 条
  • [1] An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes
    Nguyen-Thanh, N.
    Rabczuk, Timon
    Nguyen-Xuan, H.
    Bordas, Stephane P. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2112 - 2135
  • [2] A higher-order equilibrium finite element method
    Olesen, K.
    Gervang, B.
    Reddy, J. N.
    Gerritsma, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (12) : 1262 - 1290
  • [3] NUMERICAL DISPERSION IN THE FINITE-ELEMENT METHOD USING TRIANGULAR EDGE ELEMENTS
    WARREN, GS
    SCOTT, WR
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1995, 9 (06) : 315 - 319
  • [4] A Dispersion Analysis for the Finite-Element Method in Time Domain With Triangular Edge Elements
    Monorchio, Agostino
    Martini, Enrica
    Manara, Giuliano
    Pelosi, Giuseppe
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2002, 1 : 207 - 210
  • [5] Finite element modeling and multigrid preconditioner using adaptive triangular meshes
    Zhu, Yu
    Kuo, An-Yu
    Cangellaris, Andreas C.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2006, 16 (06) : 357 - 359
  • [6] Analysis of elastic wave simulation accuracy with discontinuous Galerkin finite element method based on triangular meshes
    Han D.
    Liu W.
    Si W.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (04): : 758 - 770
  • [7] Accurate higher order automated unstructured triangular meshes for airfoil designs in aerospace applications using parabolic arcs
    Devi, Supriya
    Nagaraja, K. V.
    Smitha, T. V.
    Jayan, Sarada
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 88 : 405 - 420
  • [8] A Nonlinear Finite Volume Element Method Satisfying Maximum Principle for Anisotropic Diffusion Problems on Arbitrary Triangular Meshes
    Gao, Yanni
    Wang, Shuai
    Yuan, Guangwei
    Hang, Xudeng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (01) : 135 - 159
  • [9] HIGHER ORDER GALERKIN FINITE ELEMENT METHOD FOR THE GENERALIZED DIFFUSION PDE WITH DELAY
    Lubo, Gemeda Tolessa
    Duressa, Gemechis File
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (3-4): : 603 - 618
  • [10] Dispersion analysis of the spectral element method using a triangular mesh
    Liu, Tao
    Sen, Mrinal K.
    Hu, Tianyue
    De Basabe, Jonas D.
    Li, Lin
    WAVE MOTION, 2012, 49 (04) : 474 - 483