Stabilization and blow-up for a class of weakly damped Kirchhoff plate equation with logarithmic nonlinearity

被引:1
作者
Peng, Qingqing [1 ,2 ]
Zhang, Zhifei [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Plate equation; Logarithmic nonlinear; Weakly damping; Finite time blow-up; Polynomial and exponential decay; PETROVSKY TYPE EQUATION; BOUNDARY VALUE-PROBLEM; EXISTENCE; DECAY;
D O I
10.1007/s13226-023-00518-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the initial value problem for weakly damped Kirchhoff plate equation with logarithmic nonlinearity in a bounded domain. We investigate the existence, uniqueness and polynomial or exponential energy decay estimates of global weak solutions under initial energy less than the depth of the potential well and some appropriate conditions. Moreover, we derive the finite time blow up of the weak solution with upper bounded initial energy.
引用
收藏
页码:711 / 727
页数:17
相关论文
共 26 条
  • [1] EXISTENCE AND A GENERAL DECAY RESULTS FOR A VISCOELASTIC PLATE EQUATION WITH A LOGARITHMIC NONLINEARITY
    Al-Gharabli, Mohammad M.
    Guesmia, Aissa
    Messaoudi, Salim A.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) : 159 - 180
  • [2] Initial boundary value problem of the generalized cubic double dispersion equation
    Chen, GW
    Wang, YP
    Wang, SB
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) : 563 - 577
  • [3] LOCAL EXISTENCE FOR A VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH THE DISPERSIVE TERM, INTERNAL DAMPING, AND LOGARITHMIC NONLINEARITY
    Cordeiro, Sebastiao
    Raposo, Carlos
    Ferreira, Jorge
    Rocha, Daniel
    Shahrouzi, Mohammad
    [J]. OPUSCULA MATHEMATICA, 2024, 44 (01) : 19 - 47
  • [4] Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity
    Di, Huafei
    Shang, Yadong
    Song, Zefang
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 51
  • [5] DiBenedetto E., 1993, DEGENERATE PARABOLIC, P11, DOI 10.1007/978-1-4612-0895-2
  • [6] BLOW UP OF SOLUTIONS FOR A PETROVSKY TYPE EQUATION WITH LOGARITHMIC NONLINEARITY
    Ferreira, Jorge
    Irkl, Nazl
    Piskin, Erhan
    Raposo, Carlos
    Shahrouzi, Mohammad
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1495 - 1510
  • [7] Global solutions and finite time blow up for damped semilinear wave equations
    Gazzola, F
    Squassina, M
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02): : 185 - 207
  • [8] Bounds for the Lifespan of Solutions to Fourth-order Hyperbolic Equations with Initial Data at Arbitrary Energy Level
    Guo, Bin
    Li, Xiaolei
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (06): : 1461 - 1477
  • [9] LIFESPAN OF SOLUTIONS TO A DAMPED PLATE EQUATION WITH LOGARITHMIC NONLINEARITY
    Han, Yuzhu
    Li, Qi
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (01): : 25 - 40
  • [10] Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay
    Kafini, Mohammad
    Messaoudi, Salim
    [J]. APPLICABLE ANALYSIS, 2020, 99 (03) : 530 - 547