ARITHMETIC PROPERTIES OF COLORED p-ARY PARTITIONS

被引:0
作者
Zmija, B. [1 ,2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 8, Czech Republic
[2] Jagiellonian Univ Krakow, Inst Math, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
p-ary partition; congruence; colored partition; generating function; CONGRUENCES;
D O I
10.1007/s10474-023-01382-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study divisibility properties of p-ary partitions colored with k(p - 1) colors for some positive integer k. In particular, we obtain a precise description of p-adic valuations in the case of k = p(alpha) and k = p(alpha) - 1. We also prove a general result concerning the case in which finitely many parts can be colored with a number of colors smaller than k(p - 1) and all others with exactly k(p - 1) colors, where k is arbitrary (but fixed).
引用
收藏
页码:53 / 66
页数:14
相关论文
共 11 条
[1]  
Allouche J.-P., 2003, Automatic Sequences: Theory, Applications, Generalizations, DOI DOI 10.1017/CBO9780511546563
[2]  
Andrews G.E., 1976, The Theory of Partitions
[3]   CONGRUENCE PROPERTIES OF BINARY PARTITION FUNCTION [J].
CHURCHHO.RF .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :371-&
[4]  
Granville A., 1997, ORGANIC MATH BURNABY, V20, P253
[5]  
GUPTA H, 1972, PROC CAMB PHILOS S-M, V71, P343
[6]  
RODSETH O, 1970, PROC CAMB PHILOS S-M, V68, P447
[7]   On m-ary partition function congruences:: A fresh look at a past problem [J].
Rodseth, OJ ;
Sellers, JA .
JOURNAL OF NUMBER THEORY, 2001, 87 (02) :270-281
[8]   Combinatorial congruences modulo prime powers [J].
Sun, Zhi-Wei ;
Davis, Donald M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) :5525-5553
[9]   On p-adic valuations of certain m colored p-ary partition functions [J].
Ulas, Maciej ;
Zmija, Blazej .
RAMANUJAN JOURNAL, 2021, 55 (02) :623-660
[10]   2-Adic valuations of coefficients of certain integer powers of formal power series [J].
Ulas, Maciej .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (04) :723-762