A deep learning method for replicate-based analysis of chromosome conformation contacts using Siamese neural networks

被引:1
作者
Al-jibury, Ediem [1 ,2 ]
King, James W. D. [1 ]
Guo, Ya [1 ,3 ,4 ]
Lenhard, Boris [1 ,5 ]
Fisher, Amanda G. [1 ]
Merkenschlager, Matthias [1 ]
Rueckert, Daniel [2 ,6 ]
机构
[1] Imperial Coll London, MRC LMS, London W12 0NN, England
[2] Imperial Coll London, Dept Comp, London SW7 2RH, England
[3] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Joint Int Res Lab Metab & Dev Sci, Sheng Yushou Ctr Cell Biol & Immunol, Shanghai 200240, Peoples R China
[4] WLA Labs, Shanghai 201203, Peoples R China
[5] Univ Bergen, Sars Int Ctr Marine Mol Biol, N-5008 Bergen, Norway
[6] Tech Univ Munich, Klinikum rechts Isar, D-81675 Munich, Germany
基金
英国医学研究理事会; 英国惠康基金; 欧洲研究理事会;
关键词
COHESIN; DOMAINS; CTCF; GENOME; PRINCIPLES; TOPOLOGY;
D O I
10.1038/s41467-023-40547-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The organisation of the genome in nuclear space is an important frontier of biology. Chromosome conformation capture methods such as Hi-C and Micro-C produce genome-wide chromatin contact maps that provide rich data containing quantitative and qualitative information about genome architecture. Most conventional approaches to genome-wide chromosome conformation capture data are limited to the analysis of pre-defined features, and may therefore miss important biological information. One constraint is that biologically important features can be masked by high levels of technical noise in the data. Here we introduce a replicate-based method for deep learning from chromatin conformation contact maps. Using a Siamese network configuration our approach learns to distinguish technical noise from biological variation and outperforms image similarity metrics across a range of biological systems. The features extracted from Hi-C maps after perturbation of cohesin and CTCF reflect the distinct biological functions of cohesin and CTCF in the formation of domains and boundaries, respectively. The learnt distance metrics are biologically meaningful, as they mirror the density of cohesin and CTCF binding. These properties make our method a powerful tool for the exploration of chromosome conformation capture data, such as Hi-C capture Hi-C, and Micro-C. Siamese neural networks are a powerful deep learning approach for image analysis. Here, the authors adapt this method to the replicate-based analysis of Hi-C data and find that it successfully discriminates technical noise from biological variation.
引用
收藏
页数:13
相关论文
共 49 条
  • [41] Paszke A, 2019, ADV NEUR IN, V32
  • [42] Cohesin Loss Eliminates All Loop Domains
    Rao, Suhas S. P.
    Huang, Su-Chen
    St Hilaire, Brian Glenn
    Engreitz, Jesse M.
    Perez, Elizabeth M.
    Kieffer-Kwon, Kyong-Rim
    Sanborn, Adrian L.
    Johnstone, Sarah E.
    Bascom, Gavin D.
    Bochkov, Ivan D.
    Huang, Xingfan
    Shamim, Muhammad S.
    Shin, Jaeweon
    Turner, Douglass
    Ye, Ziyi
    Omer, Arina D.
    Robinson, James T.
    Schlick, Tamar
    Bernstein, Bradley E.
    Casellas, Rafael
    Lander, Eric S.
    Aiden, Erez Lieberman
    [J]. CELL, 2017, 171 (02) : 305 - +
  • [43] A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping
    Rao, Suhas S. P.
    Huntley, Miriam H.
    Durand, Neva C.
    Stamenova, Elena K.
    Bochkov, Ivan D.
    Robinson, James T.
    Sanborn, Adrian L.
    Machol, Ido
    Omer, Arina D.
    Lander, Eric S.
    Aiden, Erez Lieberman
    [J]. CELL, 2014, 159 (07) : 1665 - 1680
  • [44] Two independent modes of chromatin organization revealed by cohesin removal
    Schwarzer, Wibke
    Abdennur, Nezar
    Goloborodko, Anton
    Pekowska, Aleksandra
    Fudenberg, Geoffrey
    Loe-Mie, Yann
    Fonseca, Nuno A.
    Huber, Wolfgang
    Haering, Christian H.
    Mirny, Leonid
    Spitz, Francois
    [J]. NATURE, 2017, 551 (7678) : 51 - +
  • [45] Structural variation in the 3D genome
    Spielmann, Malte
    Lupianez, Dario G.
    Mundlos, Stefan
    [J]. NATURE REVIEWS GENETICS, 2018, 19 (07) : 453 - 467
  • [47] Cell-type specialization is encoded by specific chromatin topologies
    Winick-Ng, Warren
    Kukalev, Alexander
    Harabula, Izabela
    Zea-Redondo, Luna
    Szabo, Dominik
    Meijer, Mandy
    Serebreni, Leonid
    Zhang, Yingnan
    Bianco, Simona
    Chiariello, Andrea M.
    Irastorza-Azcarate, Ibai
    Thieme, Christoph J.
    Sparks, Thomas M.
    Carvalho, Silvia
    Fiorillo, Luca
    Musella, Francesco
    Irani, Ehsan
    Triglia, Elena Torlai
    Kolodziejczyk, Aleksandra A.
    Abentung, Andreas
    Apostolova, Galina
    Paul, Eleanor J.
    Franke, Vedran
    Kempfer, Rieke
    Akalin, Altuna
    Teichmann, Sarah A.
    Dechant, Georg
    Ungless, Mark A.
    Nicodemi, Mario
    Welch, Lonnie
    Castelo-Branco, Goncalo
    Pombo, Ana
    [J]. NATURE, 2021, 599 (7886) : 684 - +
  • [48] Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins
    Wutz, Gordana
    Varnai, Csilla
    Nagasaka, Kota
    Cisneros, David A.
    Stocsits, Roman R.
    Tang, Wen
    Schoenfelder, Stefan
    Jessberger, Gregor
    Muhar, Matthias
    Hossain, M. Julius
    Walther, Nike
    Koch, Birgit
    Kueblbeck, Moritz
    Ellenberg, Jan
    Zuber, Johannes
    Fraser, Peter
    Peters, Jan-Michael
    [J]. EMBO JOURNAL, 2017, 36 (24) : 3573 - 3599
  • [49] Zhang B., 2022, PREPRINT