A deep learning method for replicate-based analysis of chromosome conformation contacts using Siamese neural networks

被引:1
作者
Al-jibury, Ediem [1 ,2 ]
King, James W. D. [1 ]
Guo, Ya [1 ,3 ,4 ]
Lenhard, Boris [1 ,5 ]
Fisher, Amanda G. [1 ]
Merkenschlager, Matthias [1 ]
Rueckert, Daniel [2 ,6 ]
机构
[1] Imperial Coll London, MRC LMS, London W12 0NN, England
[2] Imperial Coll London, Dept Comp, London SW7 2RH, England
[3] Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Joint Int Res Lab Metab & Dev Sci, Sheng Yushou Ctr Cell Biol & Immunol, Shanghai 200240, Peoples R China
[4] WLA Labs, Shanghai 201203, Peoples R China
[5] Univ Bergen, Sars Int Ctr Marine Mol Biol, N-5008 Bergen, Norway
[6] Tech Univ Munich, Klinikum rechts Isar, D-81675 Munich, Germany
基金
英国医学研究理事会; 英国惠康基金; 欧洲研究理事会;
关键词
COHESIN; DOMAINS; CTCF; GENOME; PRINCIPLES; TOPOLOGY;
D O I
10.1038/s41467-023-40547-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The organisation of the genome in nuclear space is an important frontier of biology. Chromosome conformation capture methods such as Hi-C and Micro-C produce genome-wide chromatin contact maps that provide rich data containing quantitative and qualitative information about genome architecture. Most conventional approaches to genome-wide chromosome conformation capture data are limited to the analysis of pre-defined features, and may therefore miss important biological information. One constraint is that biologically important features can be masked by high levels of technical noise in the data. Here we introduce a replicate-based method for deep learning from chromatin conformation contact maps. Using a Siamese network configuration our approach learns to distinguish technical noise from biological variation and outperforms image similarity metrics across a range of biological systems. The features extracted from Hi-C maps after perturbation of cohesin and CTCF reflect the distinct biological functions of cohesin and CTCF in the formation of domains and boundaries, respectively. The learnt distance metrics are biologically meaningful, as they mirror the density of cohesin and CTCF binding. These properties make our method a powerful tool for the exploration of chromosome conformation capture data, such as Hi-C capture Hi-C, and Micro-C. Siamese neural networks are a powerful deep learning approach for image analysis. Here, the authors adapt this method to the replicate-based analysis of Hi-C data and find that it successfully discriminates technical noise from biological variation.
引用
收藏
页数:13
相关论文
共 49 条
  • [1] Abdennur N., 2018, bioArxiv, DOI DOI 10.1101/437459
  • [2] Cooler: scalable storage for Hi-C data and other genomically labeled arrays
    Abdennur, Nezar
    Mirny, Leonid A.
    [J]. BIOINFORMATICS, 2020, 36 (01) : 311 - 316
  • [3] Systematic evaluation of chromosome conformation capture assays
    Akgol Oksuz, Betul
    Yang, Liyan
    Abraham, Sameer
    Venev, Sergey V.
    Krietenstein, Nils
    Parsi, Krishna Mohan
    Ozadam, Hakan
    Oomen, Marlies E.
    Nand, Ankita
    Mao, Hui
    Genga, Ryan M. J.
    Maehr, Rene
    Rando, Oliver J.
    Mirny, Leonid A.
    Gibcus, Johan H.
    Dekker, Job
    [J]. NATURE METHODS, 2021, 18 (09) : 1046 - +
  • [4] Al-jibury E., 2023, Zenodo, DOI [10.5281/zenodo.8112129, DOI 10.5281/ZENODO.8112129]
  • [5] Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339
  • [6] Learning a similarity metric discriminatively, with application to face verification
    Chopra, S
    Hadsell, R
    LeCun, Y
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 539 - 546
  • [7] Condensin-driven remodelling of X chromosome topology during dosage compensation
    Crane, Emily
    Bian, Qian
    McCord, Rachel Patton
    Lajoie, Bryan R.
    Wheeler, Bayly S.
    Ralston, Edward J.
    Uzawa, Satoru
    Dekker, Job
    Meyer, Barbara J.
    [J]. NATURE, 2015, 523 (7559) : 240 - U299
  • [8] CTCF Binding Polarity Determines Chromatin Looping
    de Wit, Elzo
    Vos, Erica S. M.
    Holwerda, Sjoerd J. B.
    Valdes-Quezada, Christian
    Verstegen, Marjon J. A. M.
    Teunissen, Hans
    Splinter, Erik
    Wijchers, Patrick J.
    Krijger, Peter H. L.
    de laat, Wouter
    [J]. MOLECULAR CELL, 2015, 60 (04) : 676 - 684
  • [9] The 3D Genome as Moderator of Chromosomal Communication
    Dekker, Job
    Mirny, Leonid
    [J]. CELL, 2016, 164 (06) : 1110 - 1121
  • [10] MCM complexes are barriers that restrict cohesin-mediated loop extrusion
    Dequeker, Bart J. H.
    Scherr, Matthias J.
    Brandao, Hugo B.
    Gassler, Johanna
    Powell, Sean
    Gaspar, Imre
    Flyamer, Ilya M.
    Lalic, Aleksandar
    Tang, Wen
    Stocsits, Roman
    Davidson, Iain F.
    Peters, Jan-Michael
    Duderstadt, Karl E.
    Mirny, Leonid A.
    Tachibana, Kikue
    [J]. NATURE, 2022, 606 (7912) : 197 - +