Deep learning-assisted identification and quantification of aneurysmal subarachnoid hemorrhage in non-contrast CT scans: Development and external validation of Hybrid 2D/3D UNet

被引:16
作者
Hu, Ping [1 ,2 ,3 ,4 ]
Zhou, Haizhu [5 ]
Yan, Tengfeng [1 ,2 ,3 ,4 ]
Miu, Hongping [6 ]
Xiao, Feng [7 ]
Zhu, Xinyi [8 ]
Shu, Lei [1 ,2 ,3 ,4 ]
Yang, Shuang [5 ]
Jin, Ruiyun [1 ]
Dou, Wenlei [1 ]
Ren, Baoyu [1 ]
Zhu, Lizhen [1 ]
Liu, Wanrong [1 ]
Zhang, Yihan [1 ]
Zeng, Kaisheng [1 ]
Ye, Minhua [1 ]
Lv, Shigang [1 ]
Wu, Miaojing [1 ]
Deng, Gang
Hu, Rong [6 ]
Zhan, Renya [7 ]
Chen, Qianxue [8 ]
Zhang, Dong [5 ]
Zhu, Xingen [1 ,2 ,3 ,4 ]
机构
[1] Nanchang Univ, Dept Neurosurg, Affiliated Hosp 2, Nanchang 330006, Jiangxi, Peoples R China
[2] Jiangxi Key Lab Neurol Tumors & Cerebrovasc Dis, Nanchang 330006, Jiangxi, Peoples R China
[3] Jiangxi Hlth Commiss Key Lab Neurol Med, Nanchang 330006, Jiangxi, Peoples R China
[4] Nanchang Univ, Inst Neurosci, Nanchang 330006, Jiangxi, Peoples R China
[5] Wuhan Univ, Sch Phys & Technol, Wuhan 430060, Hubei, Peoples R China
[6] Army Med Univ, Third Mil Med Univ, Southwest Hosp, Dept Neurosurg, Chongqing 400038, Peoples R China
[7] Zhejiang Univ, Affiliated Hosp 1, Sch Med, Dept Neurosurg, Hangzhou 310003, Zhejiang, Peoples R China
[8] Wuhan Univ, Dept Neurosurg, Renmin Hosp, Wuhan 430060, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Aneurysmal subarachnoid hemorrhage; Deep learning; Computed tomography; Identification; Quantification; DELAYED CEREBRAL-ISCHEMIA; DIAGNOSIS; BLOOD; RISK;
D O I
10.1016/j.neuroimage.2023.120321
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate stroke assessment and consequent favorable clinical outcomes rely on the early identification and quantification of aneurysmal subarachnoid hemorrhage (aSAH) in non-contrast computed tomography (NCCT) images. However, hemorrhagic lesions can be complex and difficult to distinguish manually. To solve these problems, here we propose a novel Hybrid 2D/3D UNet deep-learning framework for automatic aSAH identification and quantification in NCCT images. We evaluated 1824 consecutive patients admitted with aSAH to four hospitals in China between June 2018 and May 2022. Accuracy and precision, Dice scores and intersection over union (IoU), and interclass correlation coefficients (ICC) were calculated to assess model performance, segmentation performance, and correlations between automatic and manual segmentation, respectively. A total of 1355 patients with aSAH were enrolled: 931, 101, 179, and 144 in four datasets, of whom 326 were scanned with Siemens, 640 with Philips, and 389 with GE Medical Systems scanners. Our proposed deep-learning method accurately identified (accuracies 0.993-0.999) and segmented (Dice scores 0.550-0.897) hemorrhage in both the internal and external datasets, even combinations of hemorrhage subtypes. We further developed a convenient AI-assisted platform based on our algorithm to assist clinical workflows, whose performance was comparable to manual measurements by experienced neurosurgeons (ICCs 0.815-0.957) but with greater efficiency and reduced cost. While this tool has not yet been prospectively tested in clinical practice, our innovative hybrid network algorithm and platform can accurately identify and quantify aSAH, paving the way for fast and cheap NCCT interpretation and a reliable AI-based approach to expedite clinical decision-making for aSAH patients.
引用
收藏
页数:13
相关论文
共 44 条
[1]   ECR 2022 BOOK OF ABSTRACTS [J].
不详 .
INSIGHTS INTO IMAGING, 2022, 13 (SUPPL 4)
[2]   Digital health, big data and smart technologies for the care of patients with systemic autoimmune diseases: Where do we stand? [J].
Bergier, Hugo ;
Duron, Loic ;
Sordet, Christelle ;
Kawka, Lou ;
Schlencker, Aurelien ;
Chasset, Francois ;
Arnaud, Laurent .
AUTOIMMUNITY REVIEWS, 2021, 20 (08)
[3]   Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT [J].
Chang, P. D. ;
Kuoy, E. ;
Grinband, J. ;
Weinberg, B. D. ;
Thompson, M. ;
Homo, R. ;
Chen, J. ;
Abcede, H. ;
Shafie, M. ;
Sugrue, L. ;
Filippi, C. G. ;
Su, M. -Y. ;
Yu, W. ;
Hess, C. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (09) :1609-1616
[4]   Improving Sensitivity on Identification and Delineation of Intracranial Hemorrhage Lesion Using Cascaded Deep Learning Models [J].
Cho, Junghwan ;
Park, Ki-Su ;
Karki, Manohar ;
Lee, Eunmi ;
Ko, Seokhwan ;
Kim, Jong Kun ;
Lee, Dongeun ;
Choe, Jaeyoung ;
Son, Jeongwoo ;
Kim, Myungsoo ;
Lee, Sukhee ;
Lee, Jeongho ;
Yoon, Changhyo ;
Park, Sinyoul .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (03) :450-461
[5]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[6]   Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage - The Fisher scale revisited [J].
Claassen, J ;
Bernardini, GL ;
Kreiter, K ;
Bates, J ;
Du, YLE ;
Copeland, D ;
Connolly, ES ;
Mayer, SA .
STROKE, 2001, 32 (09) :2012-2020
[7]   Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population A Systematic Review and Meta-analysis [J].
Etminan, Nima ;
Chang, Han-Sol ;
Hackenberg, Katharina ;
de Rooij, Nicolien K. ;
Vergouwen, Mervyn D. I. ;
Rinkel, Gabriel J. E. ;
Algra, Ale .
JAMA NEUROLOGY, 2019, 76 (05) :588-597
[8]   Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J].
Feigin, Valery L. ;
Stark, Benjamin A. ;
Johnson, Catherine Owens ;
Roth, Gregory A. ;
Bisignano, Catherine ;
Abady, Gdiom Gebreheat ;
Abbasifard, Mitra ;
Abbasi-Kangevari, Mohsen ;
Abd-Allah, Foad ;
Abedi, Vida ;
Abualhasan, Ahmed ;
Abu-Rmeileh, Niveen Me ;
Abushouk, Abdelrahman, I ;
Adebayo, Oladimeji M. ;
Agarwal, Gina ;
Agasthi, Pradyumna ;
Ahinkorah, Bright Opoku ;
Ahmad, Sohail ;
Ahmadi, Sepideh ;
Salih, Yusra Ahmed ;
Aji, Budi ;
Akbarpour, Samaneh ;
Akinyemi, Rufus Olusola ;
Al Hamad, Hanadi ;
Alahdab, Fares ;
Alif, Sheikh Mohammad ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Almustanyir, Sami ;
Al-Raddadi, Rajaa M. ;
Salman, Rustam Al-Shahi ;
Alvis-Guzman, Nelson ;
Ancuceanu, Robert ;
Anderlini, Deanna ;
Anderson, Jason A. ;
Ansar, Adnan ;
Antonazzo, Ippazio Cosimo ;
Arabloo, Jalal ;
Arnlov, Johan ;
Artanti, Kurnia Dwi ;
Aryan, Zahra ;
Asgari, Samaneh ;
Ashraf, Tahira ;
Athar, Mohammad ;
Atreya, Alok ;
Ausloos, Marcel ;
Baig, Atif Amin ;
Baltatu, Ovidiu Constantin ;
Banach, Maciej ;
Barboza, Miguel A. .
LANCET NEUROLOGY, 2021, 20 (10) :795-820
[9]   Automatic Segmentation of Intracerebral Hemorrhage from Brain CT Images [J].
Gautam, Anjali ;
Raman, Balasubramanian .
MACHINE INTELLIGENCE AND SIGNAL ANALYSIS, 2019, 748 :753-764
[10]   RETRACTED: Deep Learning-Based Detection and Diagnosis of Subarachnoid Hemorrhage (Retracted Article) [J].
Gou, Xiaohong ;
He, Xuenong .
JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021