Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons

被引:20
作者
Mondal, M. Elious [1 ]
Koessler, Eric R. [1 ]
Provazza, Justin [2 ]
Vamivakas, A. Nickolas [3 ,4 ]
Cundiff, Steven T. [5 ]
Krauss, Todd D. [1 ,3 ]
Huo, Pengfei [1 ,3 ]
机构
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Quantum Simulat Technol Inc, Boston, MA 02135 USA
[3] Univ Rochester, Inst Opt, Hajim Sch Engn, Rochester, NY 14627 USA
[4] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
PHOTOSYNTHETIC ENERGY-TRANSFER; SEMICLASSICAL DESCRIPTION; CAVITIES; EQUATION; BATH;
D O I
10.1063/5.0166188
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop an accurate and numerically efficient non-adiabatic path-integral approach to simulate the non-linear spectroscopy of exciton-polariton systems. This approach is based on the partial linearized density matrix approach to model the exciton dynamics with explicit propagation of the phonon bath environment, combined with a stochastic Lindblad dynamics approach to model the cavity loss dynamics. Through simulating both linear and polariton two-dimensional electronic spectra, we systematically investigate how light-matter coupling strength and cavity loss rate influence the optical response signal. Our results confirm the polaron decoupling effect, which is the reduced exciton-phonon coupling among polariton states due to the strong light-matter interactions. We further demonstrate that the polariton coherence time can be significantly prolonged compared to the electronic coherence outside the cavity.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Multiscale Simulation of 2D Elastic Wave Propagation [J].
Zhang, Wensheng ;
Zheng, Hui .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
[32]   Interaction law of 2D localized precession states [J].
Clerc, M. G. ;
Coulibaly, S. ;
Laroze, D. .
EPL, 2010, 90 (03)
[33]   On dynamic plane elasticity problems of 2D quasicrystals [J].
Akmaz, Hakan K. ;
Akinci, Uemit .
PHYSICS LETTERS A, 2009, 373 (22) :1901-1905
[34]   Aharonov Bohm effect in 2D topological insulator [J].
Gusev, G. M. ;
Kvon, Z. D. ;
Shegai, O. A. ;
Mikhailov, N. N. ;
Dvoretsky, S. A. .
SOLID STATE COMMUNICATIONS, 2015, 205 :4-8
[35]   On melting and freezing for the 2D radial Stefan problem [J].
Hadzic, Mahir ;
Raphael, Pierre .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (11) :3259-3341
[36]   On the 2D Zakharov system with L2 Schrodinger data [J].
Bejenaru, I. ;
Herr, S. ;
Holmer, J. ;
Tataru, D. .
NONLINEARITY, 2009, 22 (05) :1063-1089
[37]   An efficient, robust and high accuracy framework for direct numerical simulation of 2D and 2D axisymmetric immiscible flow with large property contrast [J].
Qin, Zhipeng ;
Riaz, Amir .
COMPUTERS & FLUIDS, 2021, 229
[38]   Quantum molecular dynamics simulations of the thermophysical properties of shocked liquid ammonia for pressures up to 1.3 TPa [J].
Li, Dafang ;
Zhang, Ping ;
Yan, Jun .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (13)
[39]   Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors [J].
Garcia-Loureiro, Antonio J. ;
Seoane, Natalia ;
Aldegunde, Manuel ;
Valin, Raul ;
Asenov, Asen ;
Martinez, Antonio ;
Kalna, Karol .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2011, 30 (06) :841-851
[40]   Algorithms for Numerical Solving of 2D Anomalous Diffusion Problems [J].
Abrashina-Zhadaeva, Natalia ;
Romanova, Natalie .
MATHEMATICAL MODELLING AND ANALYSIS, 2012, 17 (03) :447-455