Causal perturbative QFT and white noise

被引:1
|
作者
Wawrzycki, Jaroslaw [1 ]
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
关键词
Scattering operator; causal perturbative method in QFT; white noise; Hida operators; integral kernel operators; Fock expansion;
D O I
10.1142/S0219025723500121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the Bogoliubov's causal perturbative QFT, which includes only one refinement: the creation-annihilation operators at a point, i.e. for a specific momentum, are mathematically interpreted as the Hida operators from the white noise analysis. We leave the rest of the theory completely unchanged. This allows avoiding infrared - and ultraviolet - divergences in the transition to the adiabatic limit for interacting fields. We present here the analysis of the causal axioms for the scattering operator with the Hida operators as the creation-annihilation operators.
引用
收藏
页数:54
相关论文
共 50 条
  • [11] Secular Growths and Their Relation to Equilibrium States in Perturbative QFT
    Galanda, Stefano
    Pinamonti, Nicola
    Sangaletti, Leonardo
    ANNALES HENRI POINCARE, 2025,
  • [12] Perturbative versus non-perturbative QFT lessons from the O(3) NLS model
    Balog, J
    Niedermaier, M
    Hauer, T
    PHYSICS LETTERS B, 1996, 386 (1-4) : 224 - 232
  • [13] Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics
    Fredenhagen, Klaus
    Lindner, Falk
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (03) : 895 - 932
  • [14] RG limit cycles and unconventional fixed points in perturbative QFT
    Jepsen, Christian B.
    Klebanov, Igor R.
    Popov, Fedor K.
    PHYSICAL REVIEW D, 2021, 103 (04)
  • [15] Towards systematic near-threshold calculations in perturbative QFT
    Tkachov, FV
    PHYSICS LETTERS B, 1997, 412 (3-4) : 350 - 358
  • [16] Perturbative gravity in the causal approach
    Grigore, D. R.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (01)
  • [17] Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics
    Klaus Fredenhagen
    Falk Lindner
    Communications in Mathematical Physics, 2014, 332 : 895 - 932
  • [18] Non-locality and causal evolution in QFT
    Buscemi, F.
    Compagno, G.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (15) : S695 - S709
  • [19] RG limit cycles and unconventional fixed points in perturbative QFT
    Jepsen, Christian B.
    Klebanov, Igor R.
    Popov, Fedor K.
    arXiv, 2020,
  • [20] Perturbative approach to entanglement generation in QFT using the S matrix
    Faleiro, Ricardo
    Pavao, Rafael
    Costa, Helder A. S.
    Hiller, Brigitte
    Blin, Alex H.
    Sampaio, Marcos
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (36)