The application of traditional machine learning and deep learning techniques in mammography: a review

被引:8
|
作者
Gao, Ying'e [1 ]
Lin, Jingjing [1 ]
Zhou, Yuzhuo [2 ]
Lin, Rongjin [1 ,3 ]
机构
[1] Fujian Med Univ, Sch Nursing, Fuzhou, Peoples R China
[2] Hannover Med Sch, Dept Surg, Hannover, Germany
[3] Fujian Med Univ, Dept Nursing, Affiliated Hosp 1, Fuzhou, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
关键词
breast cancer; machine learning; mammogram image; deep learning; diagnose; BREAST-CANCER; MICRO-CALCIFICATION; WAVELET TRANSFORM; MASS SEGMENTATION; TEXTURE ANALYSIS; CLASSIFICATION; DIAGNOSIS; TUMORS;
D O I
10.3389/fonc.2023.1213045
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Breast cancer, the most prevalent malignant tumor among women, poses a significant threat to patients' physical and mental well-being. Recent advances in early screening technology have facilitated the early detection of an increasing number of breast cancers, resulting in a substantial improvement in patients' overall survival rates. The primary techniques used for early breast cancer diagnosis include mammography, breast ultrasound, breast MRI, and pathological examination. However, the clinical interpretation and analysis of the images produced by these technologies often involve significant labor costs and rely heavily on the expertise of clinicians, leading to inherent deviations. Consequently, artificial intelligence(AI) has emerged as a valuable technology in breast cancer diagnosis. Artificial intelligence includes Machine Learning(ML) and Deep Learning(DL). By simulating human behavior to learn from and process data, ML and DL aid in lesion localization reduce misdiagnosis rates, and improve accuracy. This narrative review provides a comprehensive review of the current research status of mammography using traditional ML and DL algorithms. It particularly highlights the latest advancements in DL methods for mammogram image analysis and offers insights into future development directions.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Application of machine learning and deep learning for cancer vaccine (rapid review)
    Mohaddeseh Nasiri Hooshmand
    Elham Maserat
    Multimedia Tools and Applications, 2024, 83 : 51211 - 51226
  • [42] Machine learning and deep learning techniques for driver fatigue and drowsiness detection: a review
    Samy Abd El-Nabi
    Walid El-Shafai
    El-Sayed M. El-Rabaie
    Khalil F. Ramadan
    Fathi E. Abd El-Samie
    Saeed Mohsen
    Multimedia Tools and Applications, 2024, 83 : 9441 - 9477
  • [43] A systematic review on machine learning and deep learning techniques in cancer survival prediction
    Deepa, P.
    Gunavathi, C.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 174 : 62 - 71
  • [44] Skin Diseases Classification with Machine Learning and Deep Learning Techniques: A Systematic Review
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (10) : 1155 - 1173
  • [45] A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data
    Al-amri, Redhwan
    Murugesan, Raja Kumar
    Man, Mustafa
    Abdulateef, Alaa Fareed
    Al-Sharafi, Mohammed A.
    Alkahtani, Ammar Ahmed
    APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [46] A Review on Suicidal Ideation Detection Based on Machine Learning and Deep Learning Techniques
    Bhardwaj, Tanya
    Gupta, Paridhi
    Goyal, Akshita
    Nagpal, Akanksha
    Jha, Vivekanand
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 27 - 31
  • [47] Machine learning and deep learning techniques for driver fatigue and drowsiness detection: a review
    Abd El-Nabi, Samy
    El-Shafai, Walid
    El-Rabaie, El-Sayed M.
    Ramadan, Khalil F.
    Abd El-Samie, Fathi E.
    Mohsen, Saeed
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 9441 - 9477
  • [48] hERG-toxicity prediction using traditional machine learning and advanced deep learning techniques
    Ylipaa, Erik
    Chavan, Swapnil
    Bankestad, Maria
    Broberg, Johan
    Glinghammar, Bjorn
    Norinder, Ulf
    Cotgreave, Ian
    CURRENT RESEARCH IN TOXICOLOGY, 2023, 5
  • [49] Breast cancer detection using machine learning in digital mammography and breast tomosynthesis: A systematic review
    Malliori, A.
    Pallikarakis, N.
    HEALTH AND TECHNOLOGY, 2022, 12 (05) : 893 - 910
  • [50] REVIEW OF CROP YIELD ESTIMATION USING MACHINE LEARNING AND DEEP LEARNING TECHNIQUES
    Modi, Anitha
    Sharma, Priyanka
    Saraswat, Deepti
    Mehta, Rachana
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2022, 23 (02): : 59 - 80