The application of traditional machine learning and deep learning techniques in mammography: a review

被引:8
|
作者
Gao, Ying'e [1 ]
Lin, Jingjing [1 ]
Zhou, Yuzhuo [2 ]
Lin, Rongjin [1 ,3 ]
机构
[1] Fujian Med Univ, Sch Nursing, Fuzhou, Peoples R China
[2] Hannover Med Sch, Dept Surg, Hannover, Germany
[3] Fujian Med Univ, Dept Nursing, Affiliated Hosp 1, Fuzhou, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
关键词
breast cancer; machine learning; mammogram image; deep learning; diagnose; BREAST-CANCER; MICRO-CALCIFICATION; WAVELET TRANSFORM; MASS SEGMENTATION; TEXTURE ANALYSIS; CLASSIFICATION; DIAGNOSIS; TUMORS;
D O I
10.3389/fonc.2023.1213045
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Breast cancer, the most prevalent malignant tumor among women, poses a significant threat to patients' physical and mental well-being. Recent advances in early screening technology have facilitated the early detection of an increasing number of breast cancers, resulting in a substantial improvement in patients' overall survival rates. The primary techniques used for early breast cancer diagnosis include mammography, breast ultrasound, breast MRI, and pathological examination. However, the clinical interpretation and analysis of the images produced by these technologies often involve significant labor costs and rely heavily on the expertise of clinicians, leading to inherent deviations. Consequently, artificial intelligence(AI) has emerged as a valuable technology in breast cancer diagnosis. Artificial intelligence includes Machine Learning(ML) and Deep Learning(DL). By simulating human behavior to learn from and process data, ML and DL aid in lesion localization reduce misdiagnosis rates, and improve accuracy. This narrative review provides a comprehensive review of the current research status of mammography using traditional ML and DL algorithms. It particularly highlights the latest advancements in DL methods for mammogram image analysis and offers insights into future development directions.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Skin Diseases Classification with Machine Learning and Deep Learning Techniques: A Systematic Review
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (10) : 1155 - 1173
  • [32] hERG-toxicity prediction using traditional machine learning and advanced deep learning techniques
    Ylipaa, Erik
    Chavan, Swapnil
    Bankestad, Maria
    Broberg, Johan
    Glinghammar, Bjorn
    Norinder, Ulf
    Cotgreave, Ian
    CURRENT RESEARCH IN TOXICOLOGY, 2023, 5
  • [33] Machine learning and deep learning techniques for driver fatigue and drowsiness detection: a review
    Abd El-Nabi, Samy
    El-Shafai, Walid
    El-Rabaie, El-Sayed M.
    Ramadan, Khalil F.
    Abd El-Samie, Fathi E.
    Mohsen, Saeed
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 9441 - 9477
  • [34] A Review on Suicidal Ideation Detection Based on Machine Learning and Deep Learning Techniques
    Bhardwaj, Tanya
    Gupta, Paridhi
    Goyal, Akshita
    Nagpal, Akanksha
    Jha, Vivekanand
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 27 - 31
  • [35] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Hari Mohan Rai
    Multimedia Tools and Applications, 2024, 83 : 27001 - 27035
  • [36] A Comparative Study Between Deep Learning and Traditional Machine Learning Techniques for Facial Biometric Recognition
    Finizola, Jonnathann Silva
    Targino, Jonas Mendonca
    Silva Teodoro, Felipe Gustavo
    de Moraes Lima, Clodoaldo Aparecido
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2018, 2018, 11238 : 217 - 228
  • [37] Comprehensive review on machine learning and deep learning techniques for malware detection in android and IoT devicesComprehensive review on machine learning and deep learning techniques...W. Almobaideen et al.
    Wesam Almobaideen
    Orieb Abu Alghanam
    Muhammad Abdullah
    Syed Basit Hussain
    Umar Alam
    International Journal of Information Security, 2025, 24 (3)
  • [38] APPLICATION OF MACHINE LEARNING TECHNIQUES IN OUTCOMES RESEARCH: A REVIEW
    Chadha, N.
    Goyal, A.
    Cole, J. C.
    VALUE IN HEALTH, 2019, 22 : S288 - S288
  • [39] Development and Application of Traditional Chinese Medicine Using AI Machine Learning and Deep Learning Strategies
    Pan, Danping
    Guo, Yilei
    Fan, Yongfu
    Wan, Haitong
    AMERICAN JOURNAL OF CHINESE MEDICINE, 2024, 52 (03): : 605 - 623
  • [40] Do not sleep on traditional machine learning Simple and interpretable techniques are competitive to deep learning for sleep scoring
    Van Der Donckt, Jeroen
    Van Der Donckt, Jonas
    Deprost, Emiel
    Vandenbussche, Nicolas
    Rademaker, Michael
    Vandewiele, Gilles
    Van Hoecke, Sofie
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81