The application of traditional machine learning and deep learning techniques in mammography: a review

被引:8
|
作者
Gao, Ying'e [1 ]
Lin, Jingjing [1 ]
Zhou, Yuzhuo [2 ]
Lin, Rongjin [1 ,3 ]
机构
[1] Fujian Med Univ, Sch Nursing, Fuzhou, Peoples R China
[2] Hannover Med Sch, Dept Surg, Hannover, Germany
[3] Fujian Med Univ, Dept Nursing, Affiliated Hosp 1, Fuzhou, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
关键词
breast cancer; machine learning; mammogram image; deep learning; diagnose; BREAST-CANCER; MICRO-CALCIFICATION; WAVELET TRANSFORM; MASS SEGMENTATION; TEXTURE ANALYSIS; CLASSIFICATION; DIAGNOSIS; TUMORS;
D O I
10.3389/fonc.2023.1213045
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Breast cancer, the most prevalent malignant tumor among women, poses a significant threat to patients' physical and mental well-being. Recent advances in early screening technology have facilitated the early detection of an increasing number of breast cancers, resulting in a substantial improvement in patients' overall survival rates. The primary techniques used for early breast cancer diagnosis include mammography, breast ultrasound, breast MRI, and pathological examination. However, the clinical interpretation and analysis of the images produced by these technologies often involve significant labor costs and rely heavily on the expertise of clinicians, leading to inherent deviations. Consequently, artificial intelligence(AI) has emerged as a valuable technology in breast cancer diagnosis. Artificial intelligence includes Machine Learning(ML) and Deep Learning(DL). By simulating human behavior to learn from and process data, ML and DL aid in lesion localization reduce misdiagnosis rates, and improve accuracy. This narrative review provides a comprehensive review of the current research status of mammography using traditional ML and DL algorithms. It particularly highlights the latest advancements in DL methods for mammogram image analysis and offers insights into future development directions.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Machine learning and deep learning techniques for poultry tasks management: a review
    Subramani T.
    Jeganathan V.
    Kunkuma Balasubramanian S.
    Multimedia Tools and Applications, 2025, 84 (2) : 603 - 645
  • [12] The Significance of Machine Learning and Deep Learning Techniques in Cybersecurity: A Comprehensive Review
    Mijwil M.M.
    Salem I.E.
    Ismaeel M.M.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (01): : 87 - 101
  • [13] A Comparative Evaluation of Traditional Machine Learning and Deep Learning Classification Techniques for Sentiment Analysis
    Dhola, Kaushik
    Saradva, Mann
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 932 - 936
  • [14] Speech emotion recognition for psychotherapy: an analysis of traditional machine learning and deep learning techniques
    Shah, Nidhi
    Sood, Kanika
    Arora, Jayraj
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 718 - 723
  • [15] Medical Data Assessment with Traditional, Machine-learning and Deep-learning Techniques
    Lin, Hong
    Satapathy, Suresh Chandra
    Rajinikanth, V.
    CURRENT MEDICAL IMAGING, 2020, 16 (10) : 1185 - 1186
  • [16] Application of Machine Learning and Deep Learning Techniques for Corrosion and Cracks Detection in Nuclear Power Plants: A Review
    Allah, Malik Al-Abed
    Toor, Ihsan Ulhaq
    Shams, Afaque
    Siddiqui, Osman K.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (05) : 3017 - 3045
  • [17] Application of Machine Learning and Deep Learning Techniques for Corrosion and Cracks Detection in Nuclear Power Plants: A Review
    Allah, Malik Al-Abed
    Toor, Ihsan Ulhaq
    Shams, Afaque
    Siddiqui, Osman K.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (05) : 3017 - 3045
  • [18] Classification of Mammography Images by Machine Learning Techniques
    Bektas, Burcu
    Entre, Ilkim Ecem
    Kartal, Elif
    Gulsecen, Sevinc
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2018, : 580 - 585
  • [19] Is deep learning superior to traditional techniques in machine health monitoring applications
    Wang, W.
    Vos, K.
    Taylor, J.
    Jenkins, C.
    Bala, B.
    Whitehead, L.
    Peng, Z.
    AERONAUTICAL JOURNAL, 2023, 127 (1318): : 2105 - 2117
  • [20] Application of machine learning and deep learning for cancer vaccine (rapid review)
    Hooshmand, Mohaddeseh Nasiri
    Maserat, Elham
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) : 51211 - 51226