Chiral perturbation theory of the hyperfine splitting in (muonic) hydrogen

被引:4
作者
Hagelstein, Franziska [1 ,2 ,3 ]
Lensky, Vadim [1 ]
Pascalutsa, Vladimir [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Nucl Phys, D-55099 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[3] Paul Scherrer Inst, Lab Particle Phys, CH-5232 Villigen, Switzerland
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 08期
基金
瑞士国家科学基金会;
关键词
HADRONIC VACUUM-POLARIZATION; LAMB SHIFT; COMPTON-SCATTERING; PROTON STRUCTURE; SUM-RULES; NUCLEON; POLARIZABILITIES; RADIUS;
D O I
10.1140/epjc/s10052-023-11866-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The ongoing experimental efforts to measure the hyperfine transition in muonic hydrogen prompt an accurate evaluation of the proton-structure effects. At the leading order in alpha, which is O(alpha(5)) in the hyperfine splitting (hfs), these effects are usually evaluated in a data-driven fashion, using the empirical information on the proton electromagnetic form factors and spin structure functions. Here we perform a first calculation based on the baryon chiral perturbation theory (B chi PT). At leading orders it provides a prediction for the proton polarizability effects in hydrogen (H) and muonic hydrogen (mu H). We find large cancellations among the various contributions leading to, within the uncertainties, a zero polarizability effect at leading order in the B chi PT expansion. This result is in significant disagreement with the current data-driven evaluations. The small polarizability effect implies a smaller Zemach radius R-Z, if one uses the well-known experimental 1S hfs in H or the 2S hfs in mu H. We, respectively, obtain R-Z(H)=1.010(9) fm, R-Z(mu H)=1.040(33) fm. The total proton-structure effect to the hfs at O(alpha(5)) is then consistent with previous evaluations; the discrepancy in the polarizability is compensated by the smaller Zemach radius. Our recommended value for the 1S hfs in mu H is 182.640(18) meV.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Non-spherical proton shape and hydrogen hyperfine splitting
    Buchmann, A. J.
    CANADIAN JOURNAL OF PHYSICS, 2009, 87 (07) : 773 - 783
  • [32] Hyperfine structure of P states in muonic deuterium
    Faustov, R. N.
    Martynenko, A. P.
    Martynenko, G. A.
    Sorokin, V. V.
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [33] Effective field theories for muonic hydrogen
    Peset, Clara
    XIITH QUARK CONFINEMENT AND THE HADRON SPECTRUM, 2017, 137
  • [34] Muonic Hydrogen and the Proton Radius Puzzle
    Pohl, Randolf
    Gilman, Ronald
    Miller, Gerald A.
    Pachucki, Krzysztof
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 63, 2013, 63 : 175 - 204
  • [35] Proton radius from electron-proton scattering and chiral perturbation theory
    Horbatsch, Marko
    Hessels, Eric A.
    Pineda, Antonio
    PHYSICAL REVIEW C, 2017, 95 (03)
  • [36] Chiral perturbation theory Introduction and recent results in the one-nucleon sector
    Scherer, S.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2010, 64 (01) : 1 - 60
  • [37] Decuplet to octet baryon transitions in chiral perturbation theory
    Li, Hao-Song
    Liu, Zhan-Wei
    Chen, Xiao-Lin
    Deng, Wei-Zhen
    Zhu, Shi-Lin
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (01):
  • [38] Ground state hyperfine structure in muonic lithium ions
    Martynenko, A. P.
    Ulybin, A. A.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2015, 48 (19)
  • [39] Corrections of two-photon interactions in the fine and hyperfine structure of the P-energy levels of muonic hydrogen
    Dorokhov, A. E.
    Kochelev, N., I
    Martynenko, A. P.
    Martynenko, F. A.
    Radzhabov, A. E.
    EUROPEAN PHYSICAL JOURNAL A, 2018, 54 (08)
  • [40] Theory of the n=2 levels in muonic deuterium
    Krauth, Julian J.
    Diepold, Marc
    Franke, Beatrice
    Antognini, Aldo
    Kottmann, Franz
    Pohl, Randolf
    ANNALS OF PHYSICS, 2016, 366 : 168 - 196