Chiral perturbation theory of the hyperfine splitting in (muonic) hydrogen

被引:4
作者
Hagelstein, Franziska [1 ,2 ,3 ]
Lensky, Vadim [1 ]
Pascalutsa, Vladimir [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Nucl Phys, D-55099 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany
[3] Paul Scherrer Inst, Lab Particle Phys, CH-5232 Villigen, Switzerland
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 08期
基金
瑞士国家科学基金会;
关键词
HADRONIC VACUUM-POLARIZATION; LAMB SHIFT; COMPTON-SCATTERING; PROTON STRUCTURE; SUM-RULES; NUCLEON; POLARIZABILITIES; RADIUS;
D O I
10.1140/epjc/s10052-023-11866-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The ongoing experimental efforts to measure the hyperfine transition in muonic hydrogen prompt an accurate evaluation of the proton-structure effects. At the leading order in alpha, which is O(alpha(5)) in the hyperfine splitting (hfs), these effects are usually evaluated in a data-driven fashion, using the empirical information on the proton electromagnetic form factors and spin structure functions. Here we perform a first calculation based on the baryon chiral perturbation theory (B chi PT). At leading orders it provides a prediction for the proton polarizability effects in hydrogen (H) and muonic hydrogen (mu H). We find large cancellations among the various contributions leading to, within the uncertainties, a zero polarizability effect at leading order in the B chi PT expansion. This result is in significant disagreement with the current data-driven evaluations. The small polarizability effect implies a smaller Zemach radius R-Z, if one uses the well-known experimental 1S hfs in H or the 2S hfs in mu H. We, respectively, obtain R-Z(H)=1.010(9) fm, R-Z(mu H)=1.040(33) fm. The total proton-structure effect to the hfs at O(alpha(5)) is then consistent with previous evaluations; the discrepancy in the polarizability is compensated by the smaller Zemach radius. Our recommended value for the 1S hfs in mu H is 182.640(18) meV.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Tests of Chiral perturbation theory with COMPASS
    Friedrich, Jan M.
    MENU 2013 - 13TH INTERNATIONAL CONFERENCE MESON-NUCLEON PHYSICS AND THE STRUCTURE OF THE NUCLEON, 2014, 73
  • [22] Hadron Structure in Chiral Perturbation Theory
    Aleksejevs, A.
    Barkanova, S.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2013, 245 : 17 - 24
  • [23] Kaon polarizabilities in chiral perturbation theory
    Guerrero, F
    Prades, J
    PHYSICS LETTERS B, 1997, 405 (3-4) : 341 - 346
  • [24] Nuclear radiative recoil corrections to the hyperfine structure of S-states in muonic hydrogen
    Faustov, R. N.
    Martynenko, A. P.
    Martynenko, F. A.
    Sorokin, V. V.
    PHYSICS OF PARTICLES AND NUCLEI, 2017, 48 (05) : 819 - 821
  • [25] Nucleon Polarizabilities and Compton Scattering as Playground for Chiral Perturbation Theory
    Hagelstein, Franziska
    SYMMETRY-BASEL, 2020, 12 (09):
  • [26] Radiative and chiral corrections to elastic lepton-proton scattering in chiral perturbation theory
    Talukdar, Pulak
    Shastry, Vanamali C.
    Raha, Udit
    Myhrer, Fred
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [27] Laser spectroscopy of muonic hydrogen
    Pohl, Randolf
    Antognini, Aldo
    Amaro, Fernando D.
    Biraben, Francois
    Cardoso, Joao M. R.
    Covita, Daniel S.
    Dax, Andreas
    Dhawan, Satish
    Diepold, Marc
    Fernandes, Luis M. P.
    Giesen, Adolf
    Gouvea, Andrea L.
    Graf, Thomas
    Haensch, Theodor W.
    Indelicato, Paul
    Julien, Lucile
    Kao, Cheng-Yang
    Knowles, Paul
    Lopes, Jose A. M.
    Le Bigot, Eric-Olivier
    Liu, Yi-Wei
    Ludhova, Livia
    Monteiro, Cristina M. B.
    Mulhauser, Francoise
    Nebel, Tobias
    Nez, Francois
    Rabinowitz, Paul
    dos Santos, Joaquim M. F.
    Schaller, Lukas A.
    Schuhmann, Karsten
    Schwob, Catherine
    Taqqu, David
    Veloso, Joao F. C. A.
    Vogelsang, Jan
    Kottmann, Franz
    ANNALEN DER PHYSIK, 2013, 525 (8-9) : 647 - 651
  • [28] From first principles of QED to an application: hyperfine structure of P states of muonic hydrogen
    Jentschura, Ulrich D.
    CANADIAN JOURNAL OF PHYSICS, 2011, 89 (01) : 109 - 115
  • [29] Muonic hydrogen and the proton size
    Repko, Wayne W.
    Dicus, Duane A.
    PHYSICAL REVIEW D, 2018, 98 (01)
  • [30] Nuclear Structure Effects on Hyperfine Splittings in Ordinary and Muonic Deuterium
    Ji, Chen
    Zhang, Xiang
    Platter, Lucas
    PHYSICAL REVIEW LETTERS, 2024, 133 (04)