Effect of inhomogeneous gap on energy levels in graphene magnetic quantum dots

被引:3
作者
Belokda, Fatima [1 ]
Jellal, Ahmed [1 ,2 ]
Atmani, El Houssine [3 ]
机构
[1] Chouaib Doukkali Univ, Fac Sci, Lab Theoret Phys, POB 20, El Jadida 24000, Morocco
[2] Canadian Quantum Res Ctr, 204-3002 32 Ave, Vernon, BC V1T 2L7, Canada
[3] Hassan II Univ, Fac Sci & Tech, Lab Nanostruct & Adv Mat, Mech & Thermofluids, Mohammadia, Morocco
关键词
Graphene; Magnetic field; Quantum dot; Inhomogeneous gap; Energy levels;
D O I
10.1016/j.physb.2023.415022
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the energy levels of fermions magnetically confined in graphene through an electrostatic potential and an inhomogeneous gap, including 42 inside and 41 outside of the generated quantum dots. Our findings illustrate that the energy levels exhibit either symmetric or asymmetric behavior, contingent upon the signs of z and the quantum angular momentum number m. It is discovered that 41 acts by breaking the symmetry and generating a new set of energies.
引用
收藏
页数:7
相关论文
共 36 条
  • [1] Abramowitz M., 1965, HDB MATH FUNCTIONS
  • [2] Graphene Quantum Dots
    Bacon, Mitchell
    Bradley, Siobhan J.
    Nann, Thomas
    [J]. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (04) : 415 - 428
  • [3] Electron scattering of inhomogeneous gap in graphene quantum dots
    Belokda, Fatima
    Jellal, Ahmed
    Atmani, El Houssine
    [J]. PHYSICS LETTERS A, 2022, 448
  • [4] Energy levels of graphene magnetic circular quantum dot
    Belouad, Abdelhadi
    Lemaalem, Bouchaib
    Jellal, Ahmed
    Bahlouli, Hocine
    [J]. MATERIALS RESEARCH EXPRESS, 2020, 7 (01)
  • [5] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [6] Electronic states of graphene nanoribbons studied with the Dirac equation
    Brey, L
    Fertig, HA
    [J]. PHYSICAL REVIEW B, 2006, 73 (23):
  • [7] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [8] Fock-Darwin states of dirac electrons in graphene-based artificial atoms
    Chen, Hong-Yi
    Apalkov, Vadim
    Chakraborty, Tapash
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (18)
  • [9] Magnetic confinement of massless Dirac fermions in graphene
    De Martino, A.
    Dell'Anna, L.
    Egger, R.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [10] Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur
    Denis, Pablo A.
    [J]. CHEMICAL PHYSICS LETTERS, 2010, 492 (4-6) : 251 - 257