Acetaminophen exposure alters the DNA methylation pattern of Mugilogobius chulae, along with the changes in the Nrf2-Keap1 signaling pathway

被引:3
|
作者
Tang, Tianli [1 ]
Wang, Yimeng [1 ]
Wang, Chao [1 ]
Zhao, Yufei [1 ]
Nie, Xiangping [1 ,2 ]
机构
[1] Jinan Univ, Dept Ecol, Guangzhou 510632, Peoples R China
[2] Minist Educ, Engn Res Ctr Trop & Subtrop Aquat Ecol Engn, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
Mugilogobius chulae; Acetaminophen; DNA methylation; Nrf2-Keap1 signaling pathway; NRF2; HEPATOTOXICITY; ACTIVATION; EXPRESSION; STRESS; WATER;
D O I
10.1016/j.cbpc.2023.109655
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA methylation can dynamically regulate multiple physiological processes in organisms in response to changes of the external environment. The effects of acetaminophen (APAP) on DNA methylation in aquatic organisms and its toxic mechanisms is an interesting issue. In the present study, Mugilogobius chulae (Approximately 225 individual), a small benthic native fish, were employed to assess the toxic effects of APAP-exposure on non-target organisms. First, under APAP exposure (0.5 & mu;g/L and 500 & mu;g/L) for 168 h, 17,488 and 14,458 differentially methylated regions (DMRs) were identified in liver of M. chulae, respectively, which were involved in energy metabolism, signaling transduction, and cellular processes etc. The modification of lipid metabolism by DNA methylation was particularly prominent and the increased fat vacuoles in the sections were observed. Some key nodes associated with oxidative stress and detoxification such as Kelch-1ike ECH-associated protein l (Keap1) and fumarate hydratase (FH) were modified by DNA methylation. Meanwhile, changes in DNA methyltransferase and Nrf2-Keap1 signaling pathways at different concentrations of APAP (0.5 & mu;g/L, 5 & mu;g/L, 50 & mu;g/L and 500 & mu;g/L) for different time (24 h and 168 h) were addressed at the transcriptional level. Results showed that ten eleven translocation enzymes 2 (TET2) transcript expression was upregulated 5.7-folds after being exposed to 500 & mu;g/L APAP for 168 h, indicating the urgent need for active demethylation in the exposed organism. The elevated DNA methylation levels of Keap1 led to repression of its transcriptional expression so as to promote recovery or reactivation of Nrf2, which displayed negatively relationship with Keap1 gene. Meanwhile, P62 was significantly positively correlated with Nrf2. Downstream genes in the Nrf2 signaling pathway changed synergistically except for Trx2, in which GST and UGT were highly significantly upregulated. This work illustrated that APAP exposure altered the DNA methylation processes, together with the Nrf2-Keap1 signaling pathway, and affected the stress responses of M. chulae to pharmaceuticals exposure.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Protective Role of the NRF2-Keap1 Pathway in Maintaining Intestinal Barrier Function
    Wen, Zhiyong
    Liu, Weihua
    Li, Xing
    Chen, Weiguo
    Liu, Zhice
    Wen, Jianbo
    Liu, Zhiping
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2019, 2019
  • [32] Role of Nrf2-Keap1 signalling pathway in hyperglycaemia induced mitochondrial dysfunction
    Kaikini, Aakruti Arun
    Sathaye, Sadhana
    Malik, Afshan
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2019, 49 : 188 - 188
  • [33] Genetic and epigenetic regulation of the NRF2-KEAP1 pathway in human lung cancer
    Nuria Camiña
    Trevor M. Penning
    British Journal of Cancer, 2022, 126 : 1244 - 1252
  • [34] The role of Nrf2-Keap1 pathway in the survival of circulating metastatic cancer cells
    Aljohani, Hashim M.
    Furgason, John M.
    Amaya, Peter
    Deeb, Ayham
    Chalmers, Jeffery J.
    Bahassi, El Mustapha
    CANCER RESEARCH, 2018, 78 (13)
  • [35] Alterations in the Nrf2-Keap1 signaling pathway and its downstream target genes in rat brain under stress
    Djordjevic, Jelena
    Djordjevic, Ana
    Adzic, Miroslav
    Mitic, Milos
    Lukic, Iva
    Radojcic, Marija B.
    BRAIN RESEARCH, 2015, 1602 : 20 - 31
  • [36] Betaine activates the Nrf2-Keap1-ARE pathway by increasing the methylation level of Keap1 DNA promoter
    Zhang, Mengmeng
    Wang, Tianchui
    Ou, Sixian
    Zou, Yucong
    Xin, Xuan
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2024, 59 (09): : 6231 - 6242
  • [37] GULP1 regulates the NRF2-KEAP1 signaling axis in urothelial carcinoma
    Hayashi, Masamichi
    Guida, Elisa
    Inokawa, Yoshikuni
    Goldberg, Rachel
    Reis, Leonardo O.
    Ooki, Akira
    Pilli, Manohar
    Sadhukhan, Pritam
    Woo, Juhyung
    Choi, Woonyoung
    Izumchenko, Evgeny
    Gonzalez, Leonel Maldonado
    Marchionni, Luigi
    Zhavoronkov, Alex
    Brait, Mariana
    Bivalacqua, Trinity
    Baras, Alexander
    Netto, George J.
    Koch, Wayne
    Singh, Anju
    Hoque, Mohammad O.
    SCIENCE SIGNALING, 2020, 13 (645)
  • [38] Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke
    Alfieri, Alessio
    Srivastava, Salil
    Siow, Richard C. M.
    Modo, Michel
    Fraser, Paul A.
    Mann, Giovanni E.
    JOURNAL OF PHYSIOLOGY-LONDON, 2011, 589 (17): : 4125 - 4136
  • [39] Keap1/Nrf2 Signaling Pathway
    Sykiotis, Gerasimos P.
    ANTIOXIDANTS, 2021, 10 (06)
  • [40] Nrf2-Keap1 Signaling as a Potential Target for Chemoprevention of Inflammation-Associated Carcinogenesis
    Kundu, Joydeb Kumar
    Surh, Young-Joon
    PHARMACEUTICAL RESEARCH, 2010, 27 (06) : 999 - 1013