Uncertainty Estimation for the Brillouin Frequency Shift Measurement Using a Scanning Tandem Fabry-Perot Interferometer

被引:10
作者
Salzenstein, Patrice [1 ]
Wu, Thomas Y. Y. [2 ]
机构
[1] Univ Franche Comte UFC, Franche Comte Elect Mecan Therm Opt Sci & Technol, Ctr Natl Rech Sci CNRS, F-25030 Besancon, France
[2] ASTAR, Natl Metrol Ctr NMC, 8 CleanTech Loop,01-20, Singapore 637145, Singapore
关键词
brillouin light scattering; high-power laser; tandem Fabry-Perot interferometer; Brillouin spectroscopy; elastic property; speed of sound; measurement uncertainty analysis; SPECTRAL-RESOLUTION LIDAR; QUANTUM CORRELATIONS; SCATTERING PROFILES; ANGULAR-DISPERSION; HIGH-CONTRAST; LIGHT; SPECTROSCOPY; SPECTROMETER; PERFORMANCE; WAVELENGTH;
D O I
10.3390/mi14071429
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The expanded uncertainty of the measured Brillouin scattering shift frequencies is essential in assessing the measurements of parameters of various materials. We describe the general operation principles of a Brillouin light scattering (BLS) spectrometer with a high-power laser and a scanning tandem Fabry-Perot interferometer (TFPI) for material characterization. Various uncertainty components have been analyzed for the BLS spectrometer following the Guide to the Expression of Uncertainty in Measurement (GUM). The expanded relative uncertainty in the measured Brillouin frequency shift of 15.70 GHz for polymethyl methacrylate (PMMA) was estimated to be 0.26%. The calculated Brillouin frequency shift (based on material properties of PMMA) was determined to be 15.44 GHz with expanded relative uncertainty of 2.13%. It was shown that the measured and calculated Brillouin frequency shifts for PMMA agree within their expanded uncertainties. The TFPI-based BLS spectrometer can be used to measure the longitudinal modulus of materials with an expanded uncertainty of 1.9%, which is smaller than that of the ultrasonic velocity-based method (estimated to be 2.9%).
引用
收藏
页数:16
相关论文
共 119 条
[1]   Ultrasonic pulse echo studies of the physical properties of PMMA, PS, and PVC [J].
Afifi, HA .
POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2003, 42 (02) :193-205
[2]  
Agrawal Govind P., 2019, NONLINEAR FIBER OPTI, P355, DOI [10.1016/B978-0-12-817042-7.00016-6, DOI 10.1016/B978-0-12-817042-7.00016-6]
[3]  
[Anonymous], 2008, 983 ISOIEC
[4]  
[Anonymous], 1934, P INDIAN ACAD SCI, DOI DOI 10.1007/BF03035565
[5]   Recent progress and current opinions in Brillouin microscopy for life science applications [J].
Antonacci G. ;
Beck T. ;
Bilenca A. ;
Czarske J. ;
Elsayad K. ;
Guck J. ;
Kim K. ;
Krug B. ;
Palombo F. ;
Prevedel R. ;
Scarcelli G. .
Biophysical Reviews, 2020, 12 (3) :615-624
[6]   FABRY-PEROT-INTERFEROMETER WITH PERSONAL-COMPUTER CONTROL [J].
ASCHAUER, R ;
ASENBAUM, A ;
GERL, H .
APPLIED OPTICS, 1990, 29 (07) :953-958
[7]   COMPUTER-CONTROLLED FABRY-PEROT-INTERFEROMETER FOR BRILLOUIN SPECTROSCOPY [J].
ASENBAUM, A .
APPLIED OPTICS, 1979, 18 (04) :540-544
[8]  
ATHERTON PD, 1995, ASTR SOC P, V71, P50
[9]   Stimulated Brillouin scattering materials, experimental design and applications: A review [J].
Bai, Zhenxu ;
Yuan, Hang ;
Liu, Zhaohong ;
Xu, Pengbai ;
Gao, Qilin ;
Williams, Robert J. ;
Kitzler, Ondrej ;
Mildren, Richard P. ;
Wang, Yulei ;
Lu, Zhiwei .
OPTICAL MATERIALS, 2018, 75 :626-645
[10]   Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements [J].
Ballmann, Charles W. ;
Meng, Zhaokai ;
Yakovlev, Vladislav V. .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (04) :1750-1759