Study on Complex Wake Characteristics of Yawed Wind Turbine Using Actuator Line Method

被引:1
作者
Wang, Tengyuan [1 ,2 ]
Zhou, Shuni [3 ,4 ]
Cai, Chang [1 ]
Wang, Xinbao [1 ,5 ]
Wang, Zekun [1 ,2 ]
Zhang, Yuning [2 ]
Shi, Kezhong [1 ]
Zhong, Xiaohui [1 ]
Li, Qingan [1 ,5 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, CAS Lab Wind Energy Utilizat, Beijing 100190, Peoples R China
[2] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing 102206, Peoples R China
[3] Guangdong Haizhuang Offshore Windpower Res Ctr Co, Zhanjiang 524100, Peoples R China
[4] Southern Marine Sci & Engn Guangdong Lab Zhanjiang, Zhanjiang 524013, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
wind turbine; wake effect; yaw condition; actuator line method; HORIZONTAL-AXIS WIND; MODEL; FARM; VALIDATION; FLOW;
D O I
10.3390/jmse11051039
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In modern large-scale wind farms, power loss caused by the wake effect is more than 30%, and active yaw control can greatly reduce the influence of the wake effect by deflecting the wind turbine's wake. The yawed wind turbine's wake characteristics are complex, and a deep comprehension of a yawed turbine's wake is necessary. The actuator line method combined with URANS (unsteady Reynold-averaged Navier-Stokes equations) is used to study the yawed wind turbine's wake characteristics in this paper. Compared with an un-yawed wind turbine, a yawed one has two main characteristics, deflection and deformation. With an increasing yaw angle, turbine wake shows an increasing deflection. The results indicated that deflection at different height was different, the wake profile showed the biggest deflection at about the hub height, while the smallest deflection existed at the top and bottom of the yawed turbine's wake. This can be visually demonstrated by the evolution of a kidney-shape velocity distribution at the vertical cross-section. Two-dimensional and three-dimensional presentations of velocity deficit distributions are presented in this paper. The evolution of an irregular kidney-shape distribution is discussed in this paper. It is formed by the momentum exchange caused by the counter-rotating vortex pair. The results indicated that the counter-rotating vortex pair was composed of the streamwise vortex flux brought by the tip vortex. Furthermore, when the wind turbine rotated clockwise and yawed clockwise, the negative vorticity of counter-rotating vortex first appeared in the upper left position.
引用
收藏
页数:15
相关论文
共 44 条
[1]  
Abdelkhalig Ashraf, 2022, IOP Conference Series: Earth and Environmental Science, DOI 10.1088/1755-1315/1074/1/012008
[2]   Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm [J].
Barthelmie, R. J. ;
Jensen, L. E. .
WIND ENERGY, 2010, 13 (06) :573-586
[3]   Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms [J].
Barthelmie, R. J. ;
Pryor, S. C. ;
Frandsen, S. T. ;
Hansen, K. S. ;
Schepers, J. G. ;
Rados, K. ;
Schlez, W. ;
Neubert, A. ;
Jensen, L. E. ;
Neckelmann, S. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (08) :1302-1317
[4]   Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore [J].
Barthelmie, R. J. ;
Hansen, K. ;
Frandsen, S. T. ;
Rathmann, O. ;
Schepers, J. G. ;
Schlez, W. ;
Phillips, J. ;
Rados, K. ;
Zervos, A. ;
Politis, E. S. ;
Chaviaropoulos, P. K. .
WIND ENERGY, 2009, 12 (05) :431-444
[5]   Experimental and theoretical study of wind turbine wakes in yawed conditions [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
JOURNAL OF FLUID MECHANICS, 2016, 806 :506-541
[6]   A new analytical model for wind-turbine wakes [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
RENEWABLE ENERGY, 2014, 70 :116-123
[7]  
Burton T., 2011, Wind Energy Handbook, Vsecond
[8]   Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions [J].
Chen, Ziwen ;
Wang, Xiaodong ;
Guo, Yize ;
Kang, Shun .
RENEWABLE ENERGY, 2021, 163 :1849-1870
[9]   On the Wind Turbine Wake and Forest Terrain Interaction [J].
Cheng, Shyuan ;
Elgendi, Mahmoud ;
Lu, Fanghan ;
Chamorro, Leonardo P. .
ENERGIES, 2021, 14 (21)
[10]   Power Prediction of Wind Farms via a Simplified Actuator Disk Model [J].
Chiang, Yen-Cheng ;
Hsu, Yu-Cheng ;
Chau, Shiu-Wu .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (08)