Implementing quantum dimensionality reduction for non-Markovian stochastic simulation

被引:5
作者
Wu, Kang-Da [1 ,2 ]
Yang, Chengran [3 ]
He, Ren-Dong [1 ,2 ]
Gu, Mile [3 ,4 ,5 ]
Xiang, Guo-Yong [1 ,2 ,6 ]
Li, Chuan-Feng [1 ,2 ,6 ]
Guo, Guang-Can [1 ,2 ,6 ]
Elliott, Thomas J. [7 ,8 ,9 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[3] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[4] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, Singapore 637371, Singapore
[5] NTU Int Joint Res Unit, MajuLab, CNRS UNS NUS, UMI 3654, Singapore 117543, Singapore
[6] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[7] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, England
[8] Univ Manchester, Dept Math, Manchester M13 9PL, England
[9] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
D O I
10.1038/s41467-023-37555-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex systems are embedded in our everyday experience. Stochastic modelling enables us to understand and predict the behaviour of such systems, cementing its utility across the quantitative sciences. Accurate models of highly non-Markovian processes - where the future behaviour depends on events that happened far in the past - must track copious amounts of information about past observations, requiring high-dimensional memories. Quantum technologies can ameliorate this cost, allowing models of the same processes with lower memory dimension than corresponding classical models. Here we implement such memory-efficient quantum models for a family of non-Markovian processes using a photonic setup. We show that with a single qubit of memory our implemented quantum models can attain higher precision than possible with any classical model of the same memory dimension. This heralds a key step towards applying quantum technologies in complex systems modelling. Quantum technologies allow memory advantages in simulating stochastic processes, but a demonstration of this for non-Markovian processes (where the advantage would be stronger) has been missing so far. Here the authors fill this gap analytically and experimentally, using a single qubit memory to model non-Markovian processes.
引用
收藏
页数:9
相关论文
共 38 条
  • [1] Extreme Quantum Memory Advantage for Rare-Event Sampling
    Aghamohammadi, Cina
    Loomis, Samuel P.
    Mahoney, John R.
    Crutchfield, James P.
    [J]. PHYSICAL REVIEW X, 2018, 8 (01):
  • [2] Quantum-enhanced analysis of discrete stochastic processes
    Blank, Carsten
    Park, Daniel K.
    Petruccione, Francesco
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [3] Ticking-clock performance enhanced by nonclassical temporal correlations
    Budroni, Costantino
    Vitagliano, Giuseppe
    Woods, Mischa P.
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [4] Cover TM, 2012, ELEMENTS INFORM THEO, DOI [10.1002/0471200611.fmatter_indsub, DOI 10.1002/047174882X]
  • [5] Between order and chaos
    Crutchfield, James P.
    [J]. NATURE PHYSICS, 2012, 8 (01) : 17 - 24
  • [6] INFERRING STATISTICAL COMPLEXITY
    CRUTCHFIELD, JP
    YOUNG, K
    [J]. PHYSICAL REVIEW LETTERS, 1989, 63 (02) : 105 - 108
  • [7] Quantum Speedup for Active Learning Agents
    Davide Paparo, Giuseppe
    Dunjko, Vedran
    Makmal, Adi
    Angel Martin-Delgado, Miguel
    Briegel, Hans J.
    [J]. PHYSICAL REVIEW X, 2014, 4 (03):
  • [8] v Machine learning & artificial intelligence in the quantum domain: a review of recent progress
    Dunjko, Vedran
    Briegel, Hans J.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (07)
  • [9] Quantum Adaptive Agents with Efficient Long-Term Memories
    Elliott, Thomas J.
    Gu, Mile
    Garner, Andrew J. P.
    Thompson, Jayne
    [J]. PHYSICAL REVIEW X, 2022, 12 (01)
  • [10] Quantum Coarse Graining for Extreme Dimension Reduction in Modeling Stochastic Temporal Dynamics
    Elliott, Thomas J.
    [J]. PRX QUANTUM, 2021, 2 (02):