Self-powered electrocatalytic nitrate to ammonia driven by lightweight triboelectric nanogenerators for wind energy harvesting

被引:27
|
作者
Wang, Shuaitong [1 ]
Liu, Yang [2 ]
Zhang, Kun [2 ]
Gao, Shuyan [1 ,2 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-powered system; Electrocatalytic nitrate to ammonia; Triboelectric nanogenerator; Wind energy; 3D printing technology; ELECTROCHEMICAL REDUCTION; HIGH-EFFICIENCY; ANODE;
D O I
10.1016/j.nanoen.2023.108434
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia (NH3) is an essential feedstock for modern industry and agriculture, as well as a promising energy carrier owing to its high energy density (4.3 kWh kg(-1)) and storage security. The electrocatalytic nitrate reduction reaction to ammonia (NRA) is a promising alternative route for convenient and distributed NH3 synthesis coupled with clean energy, and is attracting widespread attention. Building a coupled system for NH3 production between NRA and clean energy capture is an exciting direction for future distributed energy utilization and conversion. Herein, a lightweight triboelectric nanogenerators (TENGs) with ultra-low start-up wind speed (3.0 m s(-1)) is coupled to NRA system loaded with polycrystalline copper, enabling energy harvesting in a wide wind speed band for the efficient NH3 production. An adaptation strategy for capacitor embedded in the energy conversion process is proposed to further enhance the efficiency of coupled system, achieving a high NH3 yield of 11.48 mu g cm(-2) h(-1) with the high catalytic activity of polycrystalline copper on cathode. This work opens up a coupled electrocatalysis and natural energy capture system for the conversion of NO3- to NH3, and provides an idea for the renewable energy conversion and nitrogen cycle remediation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] The Progress of PVDF as a Functional Material for Triboelectric Nanogenerators and Self-Powered Sensors
    Lee, Jin Pyo
    Lee, Jae Won
    Baik, Jeong Min
    MICROMACHINES, 2018, 9 (10):
  • [42] Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in Internet of Things and self-powered wind speed sensor
    Fan, Xueming
    He, Jian
    Mu, Jiliang
    Qian, Jichao
    Zhang, Ning
    Yang, Changjun
    Hou, Xiaojuan
    Geng, Wenping
    Wang, Xiangdong
    Chou, Xiujian
    NANO ENERGY, 2020, 68 (68)
  • [43] Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators
    Sun, Fengxin
    Zhu, Yongsheng
    Jia, Changjun
    Zhao, Tianming
    Chu, Liang
    Mao, Yupeng
    JOURNAL OF ENERGY CHEMISTRY, 2023, 79 : 477 - 488
  • [44] Recent progress of triboelectric nanogenerators as self-powered sensors in transportation engineering
    Nazar, Ali Matin
    Narazaki, Yasutaka
    Rayegani, Arash
    Sardo, Fatemeh Rahimi
    MEASUREMENT, 2022, 203
  • [45] Triboelectric Nanogenerators as a Self-Powered 3D Acceleration Sensor
    Pang, Yao Kun
    Li, Xiao Hui
    Chen, Meng Xiao
    Han, Chang Bao
    Zhang, Chi
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (34) : 19076 - 19082
  • [46] Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating
    Yuan, Ying
    Zhang, Hulin
    Wang, Jie
    Xie, Yuhang
    Khan, Saeed Ahmed
    Jin, Long
    Yan, Zhuocheng
    Huang, Long
    Pan, Taisong
    Yang, Weiqing
    Lin, Yuan
    MATERIALS RESEARCH EXPRESS, 2018, 5 (01)
  • [47] Strategies for effectively harvesting wind energy based on triboelectric nanogenerators
    Ren, Zewei
    Wu, Liting
    Pang, Yaokun
    Zhang, Weiqiang
    Yang, Rusen
    NANO ENERGY, 2022, 100
  • [48] Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring
    Wang, Meng
    Zhang, Jiahao
    Tang, Yingjie
    Li, Jun
    Zhang, Baosen
    Liang, Erjun
    Mao, Yanchao
    Wang, Xudong
    ACS NANO, 2018, 12 (06) : 6156 - 6162
  • [49] Tumbler-shaped hybrid triboelectric nanogenerators for amphibious self-powered environmental monitoring
    Zhao, Zening
    Zhang, Zheng
    Xu, Liangxu
    Gao, Fangfang
    Zhao, Bin
    Kang, Zhuo
    Liao, Qingliang
    Zhang, Yue
    NANO ENERGY, 2020, 76
  • [50] Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human-machine interaction
    Chen, Sheng
    Jiang, Jingxian
    Xu, Feng
    Gong, Shaoqin
    NANO ENERGY, 2019, 61 : 69 - 77