Symmetric finite representability of LP-spaces in rearrangement invariant spaces on [0,1]

被引:0
作者
Astashkin, Sergey V. [1 ,2 ]
Curbera, Guillermo P. [3 ,4 ]
机构
[1] Samara Natl Res Univ, Dept Math, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Bahcesehir Univ, Dept Math, TR-34353 Istanbul, Turkiye
[3] Univ Seville, Fac Matemat, Calle Tarfia S-N, Seville 41012, Spain
[4] Univ Seville, IMUS, Calle Tarfia S-N, Seville 41012, Spain
来源
REVISTA MATEMATICA COMPLUTENSE | 2024年 / 37卷 / 02期
关键词
L-p; Finite representability; Banach lattice; Rearrangement invariant space; Dilation operator; Shift operator; Boyd indices; Orlicz space; Lorentz space; BANACH; INDEXES;
D O I
10.1007/s13163-023-00464-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a separable rearrangement invariant space X on [0, 1] of fundamental type we identify the set of all p ? [1, 8] such that L-p is finitely represented in X in such a way that the unit basis vectors of L-p (c(0) if p = oo) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on (0, 8).
引用
收藏
页码:413 / 434
页数:22
相关论文
共 50 条
[41]   Vector-valued sums of independent functions in rearrangement invariant spaces [J].
S. V. Astashkin .
Siberian Mathematical Journal, 2010, 51 :584-594
[42]   Dual Spaces for Weak Martingale Hardy Spaces Associated with Rearrangement-Invariant Spaces [J].
Quan, Xingyan ;
Silas, Niyonkuru ;
Xie, Guangheng .
POTENTIAL ANALYSIS, 2024, 61 (01) :83-109
[43]   Equivalence of the Bochner norm and its transpose characterizes Lp-spaces [J].
Labuschagne, CCA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) :746-758
[44]   FINITE REPRESENTABILITY OF HOMOGENEOUS HILBERTIAN OPERATOR SPACES IN SPACES WITH FEW COMPLETELY BOUNDED MAPS [J].
Oikhberg, T. .
JOURNAL OF OPERATOR THEORY, 2009, 61 (01) :3-18
[45]   Lineability, spaceability, and latticeability of subsets of C([0,1]) and Sobolev spaces [J].
Tapia, J. Carmona ;
Fernandez-Sanchez, J. ;
Seoane-Sepulveda, J. B. ;
Trutschnig, W. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
[46]   Local Khintchine inequality in rearrangement invariant spaces [J].
Astashkin, Serguey V. ;
Curbera, Guillermo P. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (03) :619-643
[47]   THE FOURIER TRANSFORM IN WEIGHTED REARRANGEMENT INVARIANT SPACES [J].
Mastylo, Mieczyslaw ;
Sinnamon, Gord .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (03) :1099-1107
[48]   Superstrictly singular embeddings of rearrangement invariant spaces [J].
Raynaud, Y. ;
Semenov, E. M. ;
Hernandez, F. L. .
DOKLADY MATHEMATICS, 2011, 83 (02) :216-218
[49]   Dominated ergodic theorems in rearrangement invariant spaces [J].
Braverman, M ;
Rubshtein, BZ ;
Veksler, A .
STUDIA MATHEMATICA, 1998, 128 (02) :145-157
[50]   Sobolev type inequalities for rearrangement invariant spaces [J].
Guillermo P. Curbera ;
Werner J. Ricker .
Positivity, 2011, 15 :553-570