Symmetric finite representability of LP-spaces in rearrangement invariant spaces on [0,1]

被引:0
作者
Astashkin, Sergey V. [1 ,2 ]
Curbera, Guillermo P. [3 ,4 ]
机构
[1] Samara Natl Res Univ, Dept Math, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Bahcesehir Univ, Dept Math, TR-34353 Istanbul, Turkiye
[3] Univ Seville, Fac Matemat, Calle Tarfia S-N, Seville 41012, Spain
[4] Univ Seville, IMUS, Calle Tarfia S-N, Seville 41012, Spain
来源
REVISTA MATEMATICA COMPLUTENSE | 2024年 / 37卷 / 02期
关键词
L-p; Finite representability; Banach lattice; Rearrangement invariant space; Dilation operator; Shift operator; Boyd indices; Orlicz space; Lorentz space; BANACH; INDEXES;
D O I
10.1007/s13163-023-00464-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a separable rearrangement invariant space X on [0, 1] of fundamental type we identify the set of all p ? [1, 8] such that L-p is finitely represented in X in such a way that the unit basis vectors of L-p (c(0) if p = oo) correspond to pairwise disjoint and equimeasurable functions. This can be treated as a follow up of a paper by the first-named author related to separable rearrangement invariant spaces on (0, 8).
引用
收藏
页码:413 / 434
页数:22
相关论文
共 50 条
[31]   A generalized Khintchine inequality in rearrangement invariant spaces [J].
Astashkin, S. V. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2008, 42 (02) :144-147
[32]   ON MATSAEV'S CONJECTURE FOR CONTRACTIONS ON NONCOMMUTATIVE Lp-SPACES [J].
Arhancet, Cedric .
JOURNAL OF OPERATOR THEORY, 2013, 69 (02) :387-421
[33]   ON ISOMORPHIC EMBEDDINGS IN THE CLASS OF DISJOINTLY HOMOGENEOUS REARRANGEMENT INVARIANT SPACES [J].
Astashkin, S. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (03) :505-513
[34]   Isomorphic classification of mixed sequence spaces and of Besov spaces over [0,1]d [J].
Albiac, Fernando ;
Luis Ansorena, Jose .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (8-9) :1177-1186
[35]   Some new extrapolation estimates for the scale of LP-spaces [J].
Astashkin, SV .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2003, 37 (03) :221-224
[36]   Extension and integral representation of the finite Hilbert transform in rearrangement invariant spaces [J].
Curbera, Guillermo P. ;
Okada, Susumu ;
Ricker, Werner J. .
QUAESTIONES MATHEMATICAE, 2020, 43 (5-6) :783-812
[37]   Factorization property in rearrangement invariant spaces [J].
Navoyan, Kh. V. .
ADVANCES IN OPERATOR THEORY, 2023, 8 (04)
[38]   REARRANGEMENT INVARIANT SPACES WITH KATO PROPERTY [J].
Hernandez, Francisco L. ;
Semenov, Evgueni M. ;
Tradacete, Pedro .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 50 (02) :215-232
[39]   Vector-valued sums of independent functions in rearrangement invariant spaces [J].
Astashkin, S. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (04) :584-594
[40]   Series of independent random variables in rearrangement invariant spaces: An operator approach [J].
S. V. Astashkin ;
F. A. Sukochev .
Israel Journal of Mathematics, 2005, 145 :125-156