Prediction of knee pain improvement over two years for knee osteoarthritis using a dynamic nomogram based on MRI-derived radiomics: a proof-of-concept study

被引:18
作者
Lin, T. [1 ]
Peng, S. [2 ]
Lu, S. [1 ]
Fu, S. [2 ]
Zeng, D.
Li, J. [3 ]
Chen, T. [4 ]
Fan, T. [4 ]
Lang, C. [4 ]
Feng, S. [5 ]
Ma, J. [2 ]
Zhao, C. [6 ]
Antony, B. [7 ]
Cicuttini, F. [8 ]
Quan, X. [1 ]
Zhu, Z. [4 ]
Ding, C. [4 ,7 ]
机构
[1] Southern Med Univ, Zhujiang Hosp, Dept Radiol, Guangzhou 510282, Peoples R China
[2] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China
[3] Southern Med Univ, Nanfang Hosp, Dept Orthopaed, Div Orthopaed Surg, Guangzhou 510282, Peoples R China
[4] Southern Med Univ, Zhujiang Hosp, Clin Res Ctr, Guangzhou 510282, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China
[6] Philips China, Beijing 100000, Peoples R China
[7] Univ Tasmania, Menzies Inst Med Res, Hobart, Tas 7000, Australia
[8] Monash Univ, Dept Epidemiol & Prevent Med, Melbourne, Vic 3800, Australia
基金
英国医学研究理事会; 中国国家自然科学基金;
关键词
Osteoarthritis; Radiomics; Machine learning; Nomogram; MAGNETIC-RESONANCE; OLDER-ADULTS; STRUCTURAL-CHANGES; CARTILAGE VOLUME; SURVIVAL; ASSOCIATION; TEXTURE;
D O I
10.1016/j.joca.2022.10.014
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objectives: To develop and validate a nomogram to detect improved knee pain in osteoarthritis (OA) by integrating magnetic resonance imaging (MRI) radiomics signature of subchondral bone and clinical characteristics. Methods: Participants were selected from the Vitamin D Effects on Osteoarthritis (VIDEO) study. The primary outcome was 20% improvement of knee pain score over 2 years in participants administrated either vitamin D or placebo. Radiomics features of subchondral bone and clinical characteristics from 216 participants were extracted and analyzed. The participants were randomly split into the training and validation cohorts at a ratio of 8:2. Least absolute shrinkage and selection operator (LASSO) regression was used to select features and generate radiomics signatures. The optimal radiomics signature and clinical indicators were fitted into a nomogram using multivariable logistic regression model. Results: The nomogram showed favorable discrimination performance [AUCtraining, 0.79 (95% CI: 0.72 -0.79), AUCvalidation, 0.83 (95% CI: 0.70-0.96)] as well as a good calibration. Additional contributing value of fusion radiomics signature to the nomogram was statistically significant (NRI, 0.23; IDI, 0.14, P < 0.001 in training cohort and NRI, 0.29; IDI, 0.18, P < 0.05 in validating cohort). Decision curve analysis confirmed the clinical usefulness of nomogram. Conclusion: The radiomics-based nomogram comprising the MR radiomics signature and clinical variables achieves a favorable predictive efficacy and accuracy in differentiating improvement in knee pain among OA patients. This proof-of-concept study provides a promising way to predict clinically meaningful outcomes. (c) 2022 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 52 条
  • [21] Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer
    Jiang, Yuming
    Chen, Chuanli
    Xie, Jingjing
    Wang, Wei
    Zha, Xuefan
    Lv, Wenbing
    Chen, Hao
    Hu, Yanfeng
    Li, Tuanjie
    Yu, Jiang
    Zhou, Zhiwei
    Xu, Yikai
    Li, Guoxin
    [J]. EBIOMEDICINE, 2018, 36 : 171 - 182
  • [22] A nomogram for predicting the risk of invasive pulmonary adenocarcinoma for patients with solitary peripheral subsolid nodules
    Jin, Chenghua
    Cao, Jinlin
    Cai, Yu
    Wang, Lijie
    Liu, Kai
    Shen, Weiyu
    Hu, Jian
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2017, 153 (02) : 462 - +
  • [23] Associations between endogenous sex hormones and MRI structural changes in patients with symptomatic knee osteoarthritis
    Jin, X.
    Wang, B. H.
    Wang, X.
    Antony, B.
    Zhu, Z.
    Han, W.
    Cicuttini, F.
    Wluka, Anita
    Winzenberg, T.
    Blizzard, L.
    Jones, G.
    Ding, C.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2017, 25 (07) : 1100 - 1106
  • [24] Effect of Vitamin D Supplementation on Tibial Cartilage Volume and Knee Pain Among Patients With Symptomatic Knee Osteoarthritis A Randomized Clinical Trial
    Jin, Xingzhong
    Jones, Graeme
    Cicuttini, Flavia M.
    Wluka, Anita
    Zhu, Zhaohua
    Han, Weiyu
    Antony, Benny
    Wang, Xia
    Winzenberg, Tania
    Blizzard, Leigh
    Ding, Changhai
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 315 (10): : 1005 - 1013
  • [25] The Visual Analogue WOMAC 3.0 scale - internal validity and responsiveness of the VAS version
    Kersten, Paula
    White, Peter J.
    Tennant, Alan
    [J]. BMC MUSCULOSKELETAL DISORDERS, 2010, 11
  • [26] Breast Cancer Heterogeneity: MR Imaging Texture Analysis and Survival Outcomes
    Kim, Jae-Hun
    Ko, Eun Sook
    Lim, Yaeji
    Lee, Kyung Soo
    Han, Boo-Kyung
    Ko, Eun Young
    Hahn, Soo Yeon
    Nam, Seok Jin
    [J]. RADIOLOGY, 2017, 282 (03) : 665 - 675
  • [27] Machine Learning Models to Predict 30-Day Mortality in Mechanically Ventilated Patients
    Kim, Jong Ho
    Kwon, Young Suk
    Baek, Moon Seong
    [J]. JOURNAL OF CLINICAL MEDICINE, 2021, 10 (10)
  • [28] Kolasinski SL, 2020, ARTHRITIS RHEUMATOL, V72, P220, DOI [10.1002/acr.24131, 10.1002/art.41142]
  • [29] Radiomics: the bridge between medical imaging and personalized medicine
    Lambin, Philippe
    Leijenaar, Ralph T. H.
    Deist, Timo M.
    Peerlings, Jurgen
    de Jong, Evelyn E. C.
    van Timmeren, Janita
    Sanduleanu, Sebastian
    Larue, Ruben T. H. M.
    Even, Aniek J. G.
    Jochems, Arthur
    van Wijk, Yvonka
    Woodruff, Henry
    van Soest, Johan
    Lustberg, Tim
    Roelofs, Erik
    van Elmpt, Wouter
    Dekker, Andre
    Mottaghy, Felix M.
    Wildberger, Joachim E.
    Walsh, Sean
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) : 749 - 762
  • [30] Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set
    Li H.
    Zhu Y.
    Burnside E.S.
    Huang E.
    Drukker K.
    Hoadley K.A.
    Fan C.
    Conzen S.D.
    Zuley M.
    Net J.M.
    Sutton E.
    Whitman G.J.
    Morris E.
    Perou C.M.
    Ji Y.
    Giger M.L.
    [J]. npj Breast Cancer, 2 (1)