Prediction of knee pain improvement over two years for knee osteoarthritis using a dynamic nomogram based on MRI-derived radiomics: a proof-of-concept study

被引:18
作者
Lin, T. [1 ]
Peng, S. [2 ]
Lu, S. [1 ]
Fu, S. [2 ]
Zeng, D.
Li, J. [3 ]
Chen, T. [4 ]
Fan, T. [4 ]
Lang, C. [4 ]
Feng, S. [5 ]
Ma, J. [2 ]
Zhao, C. [6 ]
Antony, B. [7 ]
Cicuttini, F. [8 ]
Quan, X. [1 ]
Zhu, Z. [4 ]
Ding, C. [4 ,7 ]
机构
[1] Southern Med Univ, Zhujiang Hosp, Dept Radiol, Guangzhou 510282, Peoples R China
[2] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China
[3] Southern Med Univ, Nanfang Hosp, Dept Orthopaed, Div Orthopaed Surg, Guangzhou 510282, Peoples R China
[4] Southern Med Univ, Zhujiang Hosp, Clin Res Ctr, Guangzhou 510282, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China
[6] Philips China, Beijing 100000, Peoples R China
[7] Univ Tasmania, Menzies Inst Med Res, Hobart, Tas 7000, Australia
[8] Monash Univ, Dept Epidemiol & Prevent Med, Melbourne, Vic 3800, Australia
基金
英国医学研究理事会; 中国国家自然科学基金;
关键词
Osteoarthritis; Radiomics; Machine learning; Nomogram; MAGNETIC-RESONANCE; OLDER-ADULTS; STRUCTURAL-CHANGES; CARTILAGE VOLUME; SURVIVAL; ASSOCIATION; TEXTURE;
D O I
10.1016/j.joca.2022.10.014
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objectives: To develop and validate a nomogram to detect improved knee pain in osteoarthritis (OA) by integrating magnetic resonance imaging (MRI) radiomics signature of subchondral bone and clinical characteristics. Methods: Participants were selected from the Vitamin D Effects on Osteoarthritis (VIDEO) study. The primary outcome was 20% improvement of knee pain score over 2 years in participants administrated either vitamin D or placebo. Radiomics features of subchondral bone and clinical characteristics from 216 participants were extracted and analyzed. The participants were randomly split into the training and validation cohorts at a ratio of 8:2. Least absolute shrinkage and selection operator (LASSO) regression was used to select features and generate radiomics signatures. The optimal radiomics signature and clinical indicators were fitted into a nomogram using multivariable logistic regression model. Results: The nomogram showed favorable discrimination performance [AUCtraining, 0.79 (95% CI: 0.72 -0.79), AUCvalidation, 0.83 (95% CI: 0.70-0.96)] as well as a good calibration. Additional contributing value of fusion radiomics signature to the nomogram was statistically significant (NRI, 0.23; IDI, 0.14, P < 0.001 in training cohort and NRI, 0.29; IDI, 0.18, P < 0.05 in validating cohort). Decision curve analysis confirmed the clinical usefulness of nomogram. Conclusion: The radiomics-based nomogram comprising the MR radiomics signature and clinical variables achieves a favorable predictive efficacy and accuracy in differentiating improvement in knee pain among OA patients. This proof-of-concept study provides a promising way to predict clinically meaningful outcomes. (c) 2022 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 52 条
  • [1] Atlas of individual radiographic features in osteoarthritis, revised
    Altman, R. D.
    Gold, G. E.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2007, 15 : A1 - A56
  • [2] Ashrafinia S., 2019, QUANTITATIVE NUCL ME
  • [3] Natural Variation in Testosterone is Associated With Hypoalgesia in Healthy Women
    Bartley, Emily J.
    Palit, Shreela
    Kuhn, Bethany L.
    Kerr, Kara L.
    Terry, Ellen L.
    DelVentura, Jennifer L.
    Rhudy, Jamie L.
    [J]. CLINICAL JOURNAL OF PAIN, 2015, 31 (08) : 730 - 739
  • [4] Evaluation of WOMAC 20, 50, 70 response criteria in patients treated with hylan G-F 20 for knee osteoarthritis
    Bellamy, N
    Bell, MJ
    Goldsmith, CH
    Pericak, D
    Walker, V
    Raynauld, JP
    Torrance, GW
    Tugwell, P
    Polisson, R
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2005, 64 (06) : 881 - 885
  • [5] A warning machine Learning algorithm for early knee osteoarthritis structural progressor patient screening
    Bonakdari, Hossein
    Jamshidi, Afshin
    Pelletier, Jean-Pierre
    Abram, Francois
    Tardif, Ginette
    Martel-Pelletier, Johanne
    [J]. THERAPEUTIC ADVANCES IN MUSCULOSKELETAL DISEASE, 2021, 13
  • [6] Machine-learning, MRI bone shape and important clinical outcomes in osteoarthritis: data from the Osteoarthritis Initiative
    Bowes, Michael A.
    Kacena, Katherine
    Alabas, Oras A.
    Brett, Alan D.
    Dube, Bright
    Bodick, Neil
    Conaghan, Philip G.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 (04) : 502 - 508
  • [7] A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative
    Brahim, Abdelbasset
    Jennane, Rachid
    Riad, Rabia
    Janvier, Thomas
    Khedher, Laila
    Toumi, Hechmi
    Lespessailles, Eric
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 73 : 11 - 18
  • [8] Assessment of knee pain from MR imaging using a convolutional Siamese network
    Chang, Gary H.
    Felson, David T.
    Qiu, Shangran
    Guermazi, Ali
    Capellini, Terence D.
    Kolachalama, Vijaya B.
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (06) : 3538 - 3548
  • [9] Lower sex hormone levels are associated with more chronic musculoskeletal pain in community-dwelling elderly women
    de Kruijf, Marjolein
    Stolk, Lisette
    Zillikens, M. Carola
    de Rijke, Yolanda B.
    Bierma-Zeinstra, Sita M. A.
    Hofman, Albert
    Huygen, Frank J. P. M.
    Uitterlinden, Andre G.
    van Meurs, Joyce B. J.
    [J]. PAIN, 2016, 157 (07) : 1425 - 1431
  • [10] Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown
    Ding, CH
    Garnero, P
    Cicuttini, FM
    Scott, F
    Cooley, H
    Jones, G
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2005, 13 (03) : 198 - 205