Model tree methods for explaining deep reinforcement learning agents in real-time robotic applications

被引:11
|
作者
Gjaerum, Vilde B. [1 ]
Strumke, Inga [2 ]
Lover, Jakob [3 ]
Miller, Timothy [4 ]
Lekkas, Anastasios M. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7034 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Comp Sci, N-7034 Trondheim, Norway
[3] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7052 Trondheim, Norway
[4] Univ Melbourne, Sch Comp & Informat Syst, Melbourne, Vic 3010, Australia
关键词
Explainable artificial intelligence; Model trees; Reinforcement learning; Robotics;
D O I
10.1016/j.neucom.2022.10.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep reinforcement learning has shown useful in the field of robotics but the black-box nature of deep neural networks impedes the applicability of deep reinforcement learning agents for real-world tasks. This is addressed in the field of explainable artificial intelligence, by developing explanation methods that aim to explain such agents to humans. Model trees as surrogate models have proven useful for producing explanations for black-box models used in real-world robotic applications, in particular, due to their capability of providing explanations in real time. In this paper, we provide an overview and analysis of available methods for building model trees for explaining deep reinforcement learning agents solving robotics tasks. We find that multiple outputs are important for the model to be able to grasp the dependencies of coupled output features, i.e. actions. Additionally, our results indicate that introducing domain knowledge via a hierarchy among the input features during the building process results in higher accuracies and a faster building process. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:133 / 144
页数:12
相关论文
empty
未找到相关数据