Model tree methods for explaining deep reinforcement learning agents in real-time robotic applications

被引:11
|
作者
Gjaerum, Vilde B. [1 ]
Strumke, Inga [2 ]
Lover, Jakob [3 ]
Miller, Timothy [4 ]
Lekkas, Anastasios M. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7034 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Comp Sci, N-7034 Trondheim, Norway
[3] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7052 Trondheim, Norway
[4] Univ Melbourne, Sch Comp & Informat Syst, Melbourne, Vic 3010, Australia
关键词
Explainable artificial intelligence; Model trees; Reinforcement learning; Robotics;
D O I
10.1016/j.neucom.2022.10.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep reinforcement learning has shown useful in the field of robotics but the black-box nature of deep neural networks impedes the applicability of deep reinforcement learning agents for real-world tasks. This is addressed in the field of explainable artificial intelligence, by developing explanation methods that aim to explain such agents to humans. Model trees as surrogate models have proven useful for producing explanations for black-box models used in real-world robotic applications, in particular, due to their capability of providing explanations in real time. In this paper, we provide an overview and analysis of available methods for building model trees for explaining deep reinforcement learning agents solving robotics tasks. We find that multiple outputs are important for the model to be able to grasp the dependencies of coupled output features, i.e. actions. Additionally, our results indicate that introducing domain knowledge via a hierarchy among the input features during the building process results in higher accuracies and a faster building process. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [1] Real-time model calibration with deep reinforcement learning
    Tian, Yuan
    Chao, Manuel Arias
    Kulkarni, Chetan
    Goebel, Kai
    Fink, Olga
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 165
  • [2] Learning to Calibrate Battery Models in Real-Time with Deep Reinforcement Learning
    Unagar, Ajaykumar
    Tian, Yuan
    Chao, Manuel Arias
    Fink, Olga
    ENERGIES, 2021, 14 (05)
  • [3] Developing Real-Time Scheduling Policy by Deep Reinforcement Learning
    Bo, Zitong
    Qiao, Ying
    Leng, Chang
    Wang, Hongan
    Guo, Chaoping
    Zhang, Shaohui
    2021 IEEE 27TH REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS 2021), 2021, : 131 - 142
  • [4] Deep Reinforcement Learning for Sponsored Search Real-time Bidding
    Zhao, Jun
    Qiu, Guang
    Guan, Ziyu
    Zhao, Wei
    He, Xiaofei
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1021 - 1030
  • [5] Comparing Reinforcement Learning Methods for Real-Time Optimization of a Chemical Process
    Quah, Titus
    Machalek, Derek
    Powell, Kody M.
    PROCESSES, 2020, 8 (11) : 1 - 19
  • [6] Benchmarking Real-Time Reinforcement Learning
    Thodoroff, Pierre
    Li, Wenyu
    Lawrence, Neil D.
    NEURIPS 2021 WORKSHOP ON PRE-REGISTRATION IN MACHINE LEARNING, VOL 181, 2021, 181 : 26 - 41
  • [7] Enhancing deep reinforcement learning for scale flexibility in real-time strategy games
    Lemos, Marcelo Luiz Harry Diniz
    Vieira, Ronaldo Silva
    Tavares, Anderson Rocha
    Marcolino, Leandro Soriano
    Chaimowicz, Luiz
    ENTERTAINMENT COMPUTING, 2025, 52
  • [8] Real-Time Object Navigation With Deep Neural Networks and Hierarchical Reinforcement Learning
    Staroverov, Aleksey
    Yudin, Dmitry A.
    Belkin, Ilya
    Adeshkin, Vasily
    Solomentsev, Yaroslav K.
    Panov, Aleksandr I.
    IEEE ACCESS, 2020, 8 : 195608 - 195621
  • [9] ReCoCo: Reinforcement learning-based Congestion control for Real-time applications
    Markudova, Dena
    Meo, Michela
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [10] Reinforcement learning in real-time geometry assurance
    Jorge, Emilio
    Brynte, Lucas
    Cronrath, Constantin
    Wigstrom, Oskar
    Bengtsson, Kristofer
    Gustaysson, Emil
    Lennartson, Bengt
    Jirstrand, Mats
    51ST CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2018, 72 : 1073 - 1078