Universal lymph node detection in T2 MRI using neural networks

被引:6
作者
Mathai, Tejas Sudharshan [1 ]
Lee, Sungwon [1 ]
Shen, Thomas C. [1 ]
Lu, Zhiyong [2 ]
Summers, Ronald M. [1 ]
机构
[1] NIH, Imaging Biomarkers & Comp Aided Diag Lab, Clin Ctr, Bldg 10, Bethesda, MD 20892 USA
[2] NLM, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA
关键词
MRI; T2; Lymph node; Detection; Deep learning;
D O I
10.1007/s11548-022-02782-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose Identification of lymph nodes (LNs) that are suspicious for metastasis in T2 Magnetic Resonance Imaging (MRI) is critical for assessment of lymphadenopathy. Prior work on LN detection has been limited to specific anatomical regions of the body (pelvis, rectum). Therefore, an approach to universally detect both benign and metastatic nodes in T2 MRI studies of the body is highly desirable. Methods We developed a Computer Aided Detection (CAD) pipeline to universally identify LN in T2 MRI. First, we trained various neural networks for detecting LN: Faster RCNN with and without Hard Negative Example Mining (HNEM), FCOS, FoveaBox, VFNet, and Detection Transformer (DETR). Next, we show that VFNet with Adaptive Training Sample Selection (ATSS) outperformed Faster RCNN with HNEM. Finally, we ensembled models that surpassed a 45% mAP threshold. Results Experiments on 122 test studies revealed that VFNet achieved a 51.1% mAP and 78.7% recall at 4 false positives (FP) per volume, while the one-stage model ensemble achieved a mAP of 52.3% and sensitivity of 78.7% at 4FP. We found that VFNet and the one-stage model ensemble can be interchangeably used in the CAD pipeline. Conclusion Our CAD pipeline universally detected both benign and metastatic nodes in T2 MRI studies, resulting in a sensitivity improvement of similar to 14% over the current LN detection approaches (sensitivity of 78.7% at 4 FP vs. 64.6% at 5 FP per volume).
引用
收藏
页码:313 / 318
页数:6
相关论文
共 22 条
[1]   The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging [J].
Amin, Mahul B. ;
Greene, Frederick L. ;
Edge, Stephen B. ;
Compton, Carolyn C. ;
Gershenwald, Jeffrey E. ;
Brookland, Robert K. ;
Meyer, Laura ;
Gress, Donna M. ;
Byrd, David R. ;
Winchester, David P. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2017, 67 (02) :93-99
[2]   Soft-NMS - Improving Object Detection With One Line of Code [J].
Bodla, Navaneeth ;
Singh, Bharat ;
Chellappa, Rama ;
Davis, Larry S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5562-5570
[3]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[4]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[5]   Lymph node detection in MR Lymphography: false positive reduction using multi-view convolutional neural networks [J].
Debats, Oscar A. ;
Litjens, Geert J. S. ;
Huisman, Henkjan J. .
PEERJ, 2019, 7
[6]  
Kociolek M, 2020, COMPUT MED IMAG GRAP, V81, DOI [10.1016/j.compmedimg.2020.101716, 10.1016/j.compmedimag.2020.101716]
[7]   FoveaBox: Beyound Anchor-Based Object Detection [J].
Kong, Tao ;
Sun, Fuchun ;
Liu, Huaping ;
Jiang, Yuning ;
Li, Lei ;
Shi, Jianbo .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :7389-7398
[8]  
Lin T.-Y., 2017, PROC CVPR IEEE, P936, DOI [DOI 10.1109/CVPR.2017.106, 10.1109/CVPR.2017.106]
[9]   Identification of Metastatic Lymph Nodes in MR Imaging with Faster Region-Based Convolutional Neural Networks [J].
Lu, Yun ;
Yu, Qiyue ;
Gao, Yuanxiang ;
Zhou, Yunpeng ;
Liu, Guangwei ;
Dong, Qian ;
Ma, Jinlong ;
Ding, Lei ;
Yao, Hongwei ;
Zhang, Zhongtao ;
Xiao, Gang ;
An, Qi ;
Wang, Guiying ;
Xi, Jinchuan ;
Yuan, Weitang ;
Lian, Yugui ;
Zhang, Dianliang ;
Zhao, Chunbo ;
Yao, Qin ;
Liu, Wei ;
Zhou, Xiaoming ;
Liu, Shuhao ;
Wu, Qingyao ;
Xu, Wenjian ;
Zhang, Jianli ;
Wang, Dongshen ;
Sun, Zhenqing ;
Gao, Yuan ;
Zhang, Xianxiang ;
Hu, Jilin ;
Zhang, Maoshen ;
Wang, Guanrong ;
Zheng, Xuefeng ;
Wang, Lei ;
Zhao, Jie ;
Yang, Shujian .
CANCER RESEARCH, 2018, 78 (17) :5135-5143
[10]  
Mathai TS, 2021, ARXIV