GLOBAL EXISTENCE AND BLOW-UP FOR THE FOCUSING INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION WITH INVERSE-SQUARE POTENTIAL

被引:3
作者
An, Jinmyong [1 ]
Jang, Roesong [1 ]
Kim, Jinmyong [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2023年 / 28卷 / 02期
关键词
Inhomogeneous nonlinear Schrodinger equation; inverse-square potential; global existence; blow-up; ground state; ENERGY-CRITICAL NLS; SCATTERING;
D O I
10.3934/dcdsb.2022111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Cauchy problem for the focusing inhomogeneous nonlinear Schrodinger equation with inverse-square potential iu(t) + Delta u - c|x|(-2)u + |x|(-b)|u|(sigma) u = 0; u(0) = u(0) is an element of H-c(1), (t, x) is an element of R x R-d, where d >= 3, 0 < b < 2, 4-2b/d < sigma < 4-2b/d-2 and c > -c(d) := -(d-2/2)(2). We first establish the criteria for global existence and blow-up of general (not necessarily radial or finite variance) solutions to the equation. Using these criteria, we study the global existence and blow-up of solutions to the equation with general data lying below, at, and above the ground state threshold. Our results extend the global existence and blow-up results of Campos-Guzman (Z. Angew. Math. Phys., 2021) and Dinh-Keraani (SIAM J. Math. Anal., 2021).
引用
收藏
页码:1046 / 1067
页数:22
相关论文
共 20 条
  • [1] Local well-posedness for the inhomogeneous nonlinear Schrodinger equation in Hs(Rn)
    An, JinMyong
    Kim, JinMyong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [2] BLOW-UP SOLUTIONS AND STRONG INSTABILITY OF GROUND STATES FOR THE INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION
    Ardila, Alex H.
    Cardoso, Mykael
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 101 - 119
  • [3] Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Vekslerchik, Vadym
    Torres, Pedro J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [4] Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential
    Burq, N
    Planchon, F
    Stalker, JG
    Tahvildar-Zadeh, AS
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) : 519 - 549
  • [5] On the inhomogeneous NLS with inverse-square potential
    Campos, Luccas
    Guzman, Carlos M.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [6] Scattering of radial solutions to the inhomogeneous nonlinear Schrodinger equation
    Campos, Luccas
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
  • [7] Cazenave T., 2003, SEMILINEAR SCHRODING
  • [8] BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS
    GLASSEY, RT
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) : 1794 - 1797
  • [9] Kalf H., 1975, LECT NOTES MATH, V448, P182
  • [10] Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity
    Kartashov, Yaroslav V.
    Malomed, Boris A.
    Vysloukh, Victor A.
    Belic, Milivoj R.
    Torner, Lluis
    [J]. OPTICS LETTERS, 2017, 42 (03) : 446 - 449