Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings

被引:4
作者
Dhara, Basudeb [1 ]
Kar, Sukhendu [2 ]
Bera, Nripendu [2 ]
机构
[1] Belda Coll, Dept Math, Paschim Medinipur 721424, W Bengal, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
关键词
Derivation; Generalized derivation; Prime ring; GENERALIZED DERIVATIONS; LIE IDEALS;
D O I
10.1007/s12215-022-00743-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring with center Z(R) and lambda a nonzero left ideal of R. A mapping F : R -> R (not necessarily additive) is said to be a multiplicative (generalized)-derivation on R, if there exists a map d (not necessarily an additive map or derivation) on R such that F(xy) = F(x)y + xd(y) holds for all x, y is an element of R. Suppose that F and G are two multiplicative (generalized)-derivations of R associated with the maps d and g respectively on R. Throughout this paper we study the following situations: (1) F([x, y]) + G(yx) + d(x)F(y) + xy is an element of Z(R), (2) F(xoy) + G(yx) + d(x)F(y) + xy is an element of Z(R), (3) F(xy) + G(yx) + d(x)F(y) +/- [x,y] is an element of Z(R), (4) F([x,y]) + G(xy) + d(x)F(y) + yx is an element of Z(R), (5) F(xoy) + G(xy) + d(x)F(y) + yx is an element of Z(R), (6) F([x, y]) + G(yx) + d(y)F(x) - xy is an element of Z(R), (7) F(x)F(y) - G(yx) - xy + yx is an element of Z(R); for all x, y is an element of lambda.
引用
收藏
页码:1497 / 1516
页数:20
相关论文
共 21 条
[1]   GENERALIZED DERIVATIONS ON IDEALS OF PRIME RINGS [J].
Albas, Emine .
MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) :3-9
[2]  
Ali A, 2015, HACET J MATH STAT, V44, P1293
[3]   On one sided ideals of a semiprime ring with generalized derivations [J].
Ali, Asma ;
De Filippis, Vincenzo ;
Shujat, Faiza .
AEQUATIONES MATHEMATICAE, 2013, 85 (03) :529-537
[4]   On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings [J].
Ali S. ;
Dhara B. ;
Dar N.A. ;
Khan A.N. .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (1) :325-337
[5]  
Ashraf M., 2001, E W J MATH, V3, P87
[6]  
Ashraf M., 2005, Southeast Asian Bulletin of Mathematics, V29, P669
[7]  
Ashraf M., 2007, SE ASIAN B MATH, V31, P415
[8]  
Bell HE., 1992, Int. J. Math. Math. Sci, V15, P205, DOI DOI 10.1155/S0161171292000255
[9]  
Daif MN., 1997, E W J MATH, V9, P31
[10]   A result on generalized derivations on Lie ideals in prime rings [J].
Dhara B. ;
Kar S. ;
Mondal S. .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2) :677-682