Critical mass phenomenon for a parabolic-elliptic multispecies chemotaxis system in a two-dimensional disk

被引:0
作者
Zhong, Hua [1 ,2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu, Peoples R China
[2] Southwest Jiaotong Univ, Sch Math, Chengdu 611756, Peoples R China
基金
中国国家自然科学基金;
关键词
critical mass; logarithmic Hardy-Littlewood-Sobolev inequality; Lyapunov functional; multispecies chemotaxis model; KELLER-SEGEL SYSTEM; TIME BLOW-UP; NONRADIAL SOLUTIONS; GLOBAL EXISTENCE; AGGREGATION; BOUNDEDNESS; MODEL;
D O I
10.1002/mma.10040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A parabolic-elliptic Keller-Segel model for multipopulations in a two-dimensional unit ball will be considered in this paper. For the initial boundary value problem with mutually attractive populations, the global existence of bounded solutions has been proved through the logarithmic Hardy-Littlewood-Sobolev inequality for system when the initial masses satisfy the subcritical condition. Moreover, based on the moments technique, there exists a blow-up solution when the initial masses satisfy the supercritical case. In a word, a critical mass phenomenon has been established in this multispecies chemotaxis system.
引用
收藏
页码:8709 / 8720
页数:12
相关论文
共 35 条
  • [1] [Anonymous], 1997, Funkcial. Ekvac
  • [2] [Anonymous], 2001, Adv. Differ. Equations
  • [3] Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues
    Bellomo, N.
    Bellouquid, A.
    Tao, Y.
    Winkler, M.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) : 1663 - 1763
  • [4] On the solutions of Liouville systems
    Chipot, M
    Shafrir, I
    Wolansky, G
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 140 (01) : 59 - 105
  • [5] Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in R2
    Conca, Carlos
    Espejo, Elio
    Vilches, Karina
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2011, 22 : 553 - 580
  • [6] Espejo EE., 2009, Analysis, V29, P317, DOI DOI 10.1524/ANLY.2009.1029
  • [7] A simultaneous blow-up problem arising in tumor modeling
    Espejo, Elio
    Vilches, Karina
    Conca, Carlos
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 79 (04) : 1357 - 1399
  • [8] Global existence and blow-up for a system describing the aggregation of microglia
    Espejo, Elio
    Suzuki, Takashi
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 35 : 29 - 34
  • [9] Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in R2
    Espejo, Elio
    Vilches, Karina
    Conca, Carlos
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2013, 24 : 297 - 313
  • [10] A double critical mass phenomenon in a no-flux-Dirichlet Keller-Segel system
    Fuhrmann, Jan
    Lankeit, Johannes
    Winkler, Michael
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 162 : 124 - 151