Long-range dependent completely correlated mixed fractional Brownian motion

被引:2
作者
Dufitinema, Josephine [1 ]
Shokrollahi, Foad [2 ]
Sottinen, Tommi [2 ]
Viitasaari, Lauri [3 ]
机构
[1] IQVIA, Global Database Studies, Real World Solut, Spektri Business Pk,Bldg Duo,Metsanneidonkuja 6, Espoo 02130, Finland
[2] Univ Vaasa, Sch Technol & Innovat, POB 700, Vaasa 65101, Finland
[3] Uppsala Univ, Dept Math, POB 480, S-75106 Uppsala, Sweden
关键词
Cameron-Martin-Girsanov-Hitsuda theorem; Fractional Brownian motion; Mixed fractional Brownian motion; Prediction; Transfer principle; STOCHASTIC CALCULUS; GAUSSIAN-PROCESSES; LAW;
D O I
10.1016/j.spa.2023.104289
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we introduce the long-range dependent completely correlated mixed fractional Brownian motion (ccmfBm). This is a process that is driven by a mixture of Brownian motion (Bm) and a long-range dependent completely correlated fractional Brownian motion (fBm, ccfBm) that is constructed from the Brownian motion via the Molchan-Golosov representation. Thus, there is a single Bm driving the mixed process. In the short time-scales the ccmfBm behaves like the Bm (it has Brownian Holder index and quadratic variation). However, in the long time-scales it behaves like the fBm (it has long-range dependence governed by the fBms Hurst index). We provide a transfer principle for the ccmfBm and use it to construct the Cameron-Martin-Girsanov-Hitsuda theorem and prediction formulas. Finally, we illustrate the ccmfBm by simulations.
引用
收藏
页数:15
相关论文
共 39 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]   Identification of the Multivariate Fractional Brownian Motion [J].
Amblard, Pierre-Olivier ;
Coeurjolly, Jean-Francois .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (11) :5152-5168
[3]  
Ayache A., 1999, Fractals: Theory and Applications in Engineering, P17
[4]   Necessary and sufficient conditions for Holder continuity of Gaussian processes [J].
Azmoodeh, Ehsan ;
Sottinen, Tommi ;
Viitasaari, Lauri ;
Yazigi, Adil .
STATISTICS & PROBABILITY LETTERS, 2014, 94 :230-235
[5]   SIGNAL-DETECTION IN FRACTIONAL GAUSSIAN-NOISE [J].
BARTON, RJ ;
POOR, HV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :943-959
[6]  
Bender C., 2007, Theory Stock. Process, V13, P23
[7]   Pricing by hedging and no-arbitrage beyond semimartingales [J].
Bender, Christian ;
Sottinen, Tommi ;
Valkeila, Esko .
FINANCE AND STOCHASTICS, 2008, 12 (04) :441-468
[8]  
Bender C, 2011, ADVANCED MATHEMATICAL METHODS FOR FINANCE, P75, DOI 10.1007/978-3-642-18412-3_3
[9]  
Beran J., 2013, LONG MEMORY PROCESSE
[10]  
Biagini F, 2008, PROBAB APPL SER, P1