Multiplex Heterogeneous Graph Neural Network with Behavior Pattern Modeling

被引:13
|
作者
Fu, Chaofan [1 ]
Zheng, Guanjie [2 ]
Huang, Chao [3 ]
Yu, Yanwei [1 ]
Dong, Junyu [1 ]
机构
[1] Ocean Univ China, Qingdao, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[3] Univ Hong Kong, Hong Kong, Peoples R China
来源
PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023 | 2023年
基金
中国国家自然科学基金;
关键词
Graph Representation Learning; Multiplex Heterogeneous Networks; Graph Neural Networks; Basic Behavior Pattern;
D O I
10.1145/3580305.3599441
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Heterogeneous graph neural networks have gained great popularity in tackling various network analysis tasks on heterogeneous network data. However, most existing works mainly focus on general heterogeneous networks, and assume that there is only one type of edge between two nodes, while ignoring the multiplex characteristics between multi-typed nodes in multiplex heterogeneous networks and the different importance of multiplex structures among nodes for node embedding. In addition, the over-smoothing issue of graph neural networks limits existing models to only capturing local structure signals but hardly learning the global relevant information of the network. To tackle these challenges, this work proposes a model called Behavior Pattern based Heterogeneous Graph Neural Network (BPHGNN) for multiplex heterogeneous network embedding. Specifically, BPHGNN can collaboratively learn node representations across different multiplex structures among nodes with adaptive importance learning from local and global perspectives in multiplex heterogeneous networks through depth behavior pattern aggregation and breadth behavior pattern aggregation. Extensive experiments on six real-world networks with various network analytical tasks demonstrate the significant superiority of BPHGNN against state-of-the-art approaches in terms of various evaluation metrics.
引用
收藏
页码:482 / 494
页数:13
相关论文
共 50 条
  • [31] The Network of Mutual Funds: A Dynamic Heterogeneous Graph Neural Network for Estimating Mutual Funds Performance
    Jiang, Siqi
    Uddin, Ajim
    Wei, Zhi
    Yu, Dantong
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2023, 2023, : 235 - 243
  • [32] Meta-path-based heterogeneous graph neural networks in academic network
    Liang, Xingxing
    Ma, Yang
    Cheng, Guangquan
    Fan, Changjun
    Yang, Yuling
    Liu, Zhong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (06) : 1553 - 1569
  • [33] Meta-path-based heterogeneous graph neural networks in academic network
    Xingxing Liang
    Yang Ma
    Guangquan Cheng
    Changjun Fan
    Yuling Yang
    Zhong Liu
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 1553 - 1569
  • [34] Collaborative representation learning for nodes and relations via heterogeneous graph neural network
    Li, Weimin
    Ni, Lin
    Wang, Jianjia
    Wang, Can
    KNOWLEDGE-BASED SYSTEMS, 2022, 255
  • [35] OSGNN: Original graph and Subgraph aggregated Graph Neural Network
    Yan, Yeyu
    Li, Chao
    Yu, Yanwei
    Li, Xiangju
    Zhao, Zhongying
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 225
  • [36] Heterogeneous graph neural networks with denoising for graph embeddings
    Dong, Xinrui
    Zhang, Yijia
    Pang, Kuo
    Chen, Fei
    Lu, Mingyu
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [37] Status-Aware Signed Heterogeneous Network Embedding With Graph Neural Networks
    Lin, Wanyu
    Li, Baochun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4580 - 4592
  • [38] Heterogeneous Graph Neural Architecture Search
    Gao, Yang
    Zhang, Peng
    Li, Zhao
    Zhou, Chuan
    Liu, Yongchao
    Hu, Yue
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1066 - 1071
  • [39] Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN
    Rusek, Krzysztof
    Suarez-Varela, Jose
    Mestres, Albert
    Barlet-Ros, Pere
    Cabellos-Aparicio, Albert
    SOSR '19: PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON SDN RESEARCH, 2019, : 140 - 151
  • [40] RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN
    Rusek, Krzysztof
    Suarez-Varela, Jose
    Almasan, Paul
    Barlet-Ros, Pere
    Cabellos-Aparicio, Albert
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (10) : 2260 - 2270