Thermal Runaway Propagation Analytics and Crosstalk in Lithium-Ion Battery Modules

被引:12
|
作者
Karmakar, Avijit [1 ]
Zhou, Hanwei [1 ]
Vishnugopi, Bairav S. [1 ]
Mukherjee, Partha P. [1 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
关键词
abuse scenarios; interelectrode crosstalk; lithium-ion batteries; safety characteristics; thermal runaway; thermal runaway propagation; MODEL; BEHAVIOR; PACK; ELECTROLYTE; TECHNOLOGY; PREDICTION; SAFETY; CELLS; GAS;
D O I
10.1002/ente.202300707
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal safety of lithium-ion (Li-ion) batteries continues to remain a critical concern for widespread vehicle electrification. Under abuse scenarios, thermal runaway (TR) of individual energy-dense Li-ion cells can be dominated by various exothermic mechanisms due to interelectrode crosstalk, resulting in an enormous heat generation response that can potentially lead to thermal runaway propagation (TRP) in a battery module. Herein, a hierarchical TRP analytics approach is developed, which includes cell-level thermokinetic and electrode crosstalk interactions derived from accelerating rate calorimetry characteristics of a representative high-energy 18650 cylindrical Li-ion cell with Ni-rich cathodes and Si-C anodes. The hierarchical TRP model, coupled with multimodal heat dissipation, demonstrated for an exemplar energy-dense Li-ion battery module configuration, determines TRP criticality at module level for a wide range of conditions, including ambient temperature, intercell spacing, trigger cell location, external heating power, and heat dissipation coefficients. Potential propagation pathways have been identified, and their underlying attributes in terms of propagation speed, heat release from exothermic reactions, critical thermal energy input, and heat dissipation to surroundings have been quantified. This hierarchical approach, including thermal transfer and chemical interelectrode crosstalk during TR, can provide high-resolution TRP analytics for energy-dense Li-ion battery modules and is scalable to packs. The thermal safety of lithium-ion batteries continues to remain a major concern. This study presents a hierarchical thermal runaway propagation analytics framework including the underlying thermokinetic and electrode crosstalk interactions in a lithium-ion cell. The modeling framework captures the module-level thermal runaway criticality across a wide range of conditions such as intercell spacing, trigger cell location, and external heating power.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Assessment of Thermal Runaway propagation in lithium-ion battery modules with different separator materials
    da Silva, Gabriel Menezes
    Lima, Thiago Jose
    da Silva, Dayvis Dias
    Henriques, Izabela Batista
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 197
  • [2] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [3] Thermal runaway propagation characteristics and preventing strategies under dynamic thermal transfer conditions for lithium-ion battery modules
    Zhang, Tao
    Qiu, Xiangyun
    Li, Miaomiao
    Yin, Yanxin
    Jia, Longzhou
    Dai, Zuoqiang
    Guo, Xiangxin
    Wei, Tao
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [4] The effect of PCM on mitigating thermal runaway propagation in lithium-ion battery modules
    Luo, Weiyi
    Zhao, Luyao
    Chen, Mingyi
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [5] Experimental Analysis of Thermal Runaway Propagation Risk within 18650 Lithium-Ion Battery Modules
    Zhong, Guobin
    Li, Huang
    Wang, Chao
    Xu, Kaiqi
    Wang, Qingsong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) : A1925 - A1934
  • [6] Effects of heating position on the thermal runaway propagation of a lithium-ion battery module in a battery enclosure
    Li, Zijian
    Zhang, Peihong
    Shang, Rongxue
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [7] Analyzing Thermal Runaway Propagation in Lithium-Ion Battery Modules with Reduced Flammability Electrolyte Cells
    Sorensen, Alexander
    Belt, Jeffrey
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (08)
  • [8] Thermal runaway and flame propagation of lithium-ion battery in confined spaces: Experiments and simulations
    Xu, Yingying
    Lu, Jiajun
    Zhang, Pengwei
    Gao, Kejie
    Huang, Yuqi
    JOURNAL OF ENERGY STORAGE, 2025, 117
  • [9] Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery
    Zhang Q.
    Liu T.
    Zhao Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (01): : 17 - 22
  • [10] A novel methodology for modeling and analyzing thermal runaway propagation in lithium-ion battery modules using probability functions
    Yu, Jin
    Guo, Chuanyu
    Yu, Jia-jia
    APPLIED THERMAL ENGINEERING, 2024, 257