A statistical deformation model-based data augmentation method for volumetric medical image segmentation

被引:18
|
作者
He, Wenfeng [1 ,2 ]
Zhang, Chulong [1 ]
Dai, Jingjing [1 ]
Liu, Lin [1 ]
Wang, Tangsheng [1 ]
Liu, Xuan [1 ]
Jiang, Yuming [3 ]
Li, Na [4 ]
Xiong, Jing [1 ]
Wang, Lei [1 ]
Xie, Yaoqin [1 ]
Liang, Xiaokun [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[3] Wake Forest Univ, Bowman Gray Sch Med, Dept Radiat Oncol, Winston Salem, NC 27157 USA
[4] Guangdong Med Univ, Dept Biomed Engn, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical Image Segmentation; Data Augmentation; Deep Learning; Deformable Image Registration; DEEP LEARNING FRAMEWORK; ORGANS; NETWORK; RISK; NET;
D O I
10.1016/j.media.2023.102984
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate delineation of organs-at-risk (OARs) is a crucial step in treatment planning during radiotherapy, as it minimizes the potential adverse effects of radiation on surrounding healthy organs. However, manual contouring of OARs in computed tomography (CT) images is labor-intensive and susceptible to errors, particularly for low-contrast soft tissue. Deep learning-based artificial intelligence algorithms surpass traditional methods but require large datasets. Obtaining annotated medical images is both time-consuming and expensive, hindering the collection of extensive training sets. To enhance the performance of medical image segmentation, augmentation strategies such as rotation and Gaussian smoothing are employed during preprocessing. However, these conventional data augmentation techniques cannot generate more realistic deformations, limiting improvements in accuracy. To address this issue, this study introduces a statistical deformation model-based data augmentation method for volumetric medical image segmentation. By applying diverse and realistic data augmentation to CT images from a limited patient cohort, our method significantly improves the fully automated segmentation of OARs across various body parts. We evaluate our framework on three datasets containing tumor OARs from the head, neck, chest, and abdomen. Test results demonstrate that the proposed method achieves state-of-the-art performance in numerous OARs segmentation challenges. This innovative approach holds considerable potential as a powerful tool for various medical imaging-related sub-fields, effectively addressing the challenge of limited data access.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Image data augmentation for improving performance of deep learning-based model in pathological lung segmentation
    Alam, Md Shariful
    Wang, Dadong
    Sowmya, Arcot
    2021 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2021), 2021, : 383 - 387
  • [32] Statistical significance based graph cut regularization for medical image segmentation
    Candemir, Sema
    Akgul, Yusuf Sinan
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2011, 19 (06) : 957 - 972
  • [33] Diffusion Model-Based Data Augmentation for Lung Ultrasound Classification with Limited Data
    Zhang, Xiaohui
    Gangopadhyay, Ahana
    Chang, Hsi-Ming
    Soni, Ravi
    MACHINE LEARNING FOR HEALTH, ML4H, VOL 225, 2023, 225 : 664 - 676
  • [34] A Medical Image Segmentation Method Fusing Anisotropic Diffusion Model
    Zhang, Meng-meng
    Ma, Ling
    Yang, Zhi-hui
    Yang, Yang
    Bai, Hui-hui
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 1121 - +
  • [35] A Data-Centric Augmentation Approach for Disturbed Sensor Image Segmentation
    Roth, Andreas
    Wuestefeld, Konstantin
    Weichert, Frank
    JOURNAL OF IMAGING, 2021, 7 (10)
  • [36] A Medical Image Segmentation Method Based on Improved UNet 3+ Network
    Xu, Yang
    Hou, Shike
    Wang, Xiangyu
    Li, Duo
    Lu, Lu
    DIAGNOSTICS, 2023, 13 (03)
  • [37] Data Augmentation method of Remote Sensing image based on Transfer Learning and VGG Model
    Deng, Zhongjie
    Dong, Zhenghong
    Yang, Fan
    Xia, Lurui
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565
  • [38] Improving Medical Image Segmentation Using Test-Time Augmentation with MedSAM
    Nazzal, Wasfieh
    Thurnhofer-Hemsi, Karl
    Lopez-Rubio, Ezequiel
    MATHEMATICS, 2024, 12 (24)
  • [39] A data augmentation method for fully automatic brain tumor segmentation
    Wang, Yu
    Ji, Yarong
    Xiao, Hongbing
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [40] CarveMix: A simple data augmentation method for brain lesion segmentation
    Zhang, Xinru
    Liu, Chenghao
    Ou, Ni
    Zeng, Xiangzhu
    Zhuo, Zhizheng
    Duan, Yunyun
    Xiong, Xiaoliang
    Yu, Yizhou
    Liu, Zhiwen
    Liu, Yaou
    Ye, Chuyang
    NEUROIMAGE, 2023, 271