A statistical deformation model-based data augmentation method for volumetric medical image segmentation

被引:18
|
作者
He, Wenfeng [1 ,2 ]
Zhang, Chulong [1 ]
Dai, Jingjing [1 ]
Liu, Lin [1 ]
Wang, Tangsheng [1 ]
Liu, Xuan [1 ]
Jiang, Yuming [3 ]
Li, Na [4 ]
Xiong, Jing [1 ]
Wang, Lei [1 ]
Xie, Yaoqin [1 ]
Liang, Xiaokun [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[3] Wake Forest Univ, Bowman Gray Sch Med, Dept Radiat Oncol, Winston Salem, NC 27157 USA
[4] Guangdong Med Univ, Dept Biomed Engn, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical Image Segmentation; Data Augmentation; Deep Learning; Deformable Image Registration; DEEP LEARNING FRAMEWORK; ORGANS; NETWORK; RISK; NET;
D O I
10.1016/j.media.2023.102984
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate delineation of organs-at-risk (OARs) is a crucial step in treatment planning during radiotherapy, as it minimizes the potential adverse effects of radiation on surrounding healthy organs. However, manual contouring of OARs in computed tomography (CT) images is labor-intensive and susceptible to errors, particularly for low-contrast soft tissue. Deep learning-based artificial intelligence algorithms surpass traditional methods but require large datasets. Obtaining annotated medical images is both time-consuming and expensive, hindering the collection of extensive training sets. To enhance the performance of medical image segmentation, augmentation strategies such as rotation and Gaussian smoothing are employed during preprocessing. However, these conventional data augmentation techniques cannot generate more realistic deformations, limiting improvements in accuracy. To address this issue, this study introduces a statistical deformation model-based data augmentation method for volumetric medical image segmentation. By applying diverse and realistic data augmentation to CT images from a limited patient cohort, our method significantly improves the fully automated segmentation of OARs across various body parts. We evaluate our framework on three datasets containing tumor OARs from the head, neck, chest, and abdomen. Test results demonstrate that the proposed method achieves state-of-the-art performance in numerous OARs segmentation challenges. This innovative approach holds considerable potential as a powerful tool for various medical imaging-related sub-fields, effectively addressing the challenge of limited data access.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Null Model-Based Data Augmentation for Graph Classification
    Wang, Zeyu
    Wang, Jinhuan
    Shan, Yalu
    Yu, Shanqing
    Xu, Xiaoke
    Xuan, Qi
    Chen, Guanrong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1821 - 1833
  • [22] Model-based segmentation of medical imagery by matching distributions
    Freedman, D
    Radke, RJ
    Zhang, T
    Jeong, Y
    Lovelock, DM
    Chen, GTY
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (03) : 281 - 292
  • [23] Deep learning-based medical image segmentation with limited labels
    Chi, Weicheng
    Ma, Lin
    Wu, Junjie
    Chen, Mingli
    Lu, Weiguo
    Gu, Xuejun
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (23)
  • [24] Dense-sparse representation matters: A point-based method for volumetric medical image segmentation
    Jiang, Yun
    Liu, Bingxi
    Zhang, Zequn
    Yan, Yao
    Guo, Huanting
    Li, Yuhang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [25] Synchronous Medical Image Augmentation framework for deep learning-based image segmentation
    Chen, Jianguo
    Yang, Nan
    Pan, Yuhui
    Liu, Hailing
    Zhang, Zhaolei
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 104
  • [26] A new medical image segmentation method based on Chan-Vese model
    Ma Yuan-zheng
    Chen Jia-xin
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 3750 - 3756
  • [27] Medical image segmentation method based on full perceived dynamic network
    Tang, Wentao
    Deng, Hongmin
    Huang, Zhengwei
    Jiang, Yuanjian
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 142
  • [28] SEGMENTATION-BY-DETECTION: A CASCADE NETWORK FOR VOLUMETRIC MEDICAL IMAGE SEGMENTATION
    Tang, Min
    Zhang, Zichen
    Cobzas, Dana
    Jagersand, Martin
    Jaremko, Jacob L.
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1356 - 1359
  • [29] Volumetric memory network for interactive medical image segmentation
    Zhou, Tianfei
    Li, Liulei
    Bredell, Gustav
    Li, Jianwu
    Unkelbach, Jan
    Konukoglu, Ender
    MEDICAL IMAGE ANALYSIS, 2023, 83
  • [30] Cross-set data augmentation for semi-supervised medical image segmentation
    Wu, Qianhao
    Jiang, Xixi
    Zhang, Dong
    Feng, Yifei
    Tanga, Jinhui
    IMAGE AND VISION COMPUTING, 2025, 154