A statistical deformation model-based data augmentation method for volumetric medical image segmentation

被引:18
|
作者
He, Wenfeng [1 ,2 ]
Zhang, Chulong [1 ]
Dai, Jingjing [1 ]
Liu, Lin [1 ]
Wang, Tangsheng [1 ]
Liu, Xuan [1 ]
Jiang, Yuming [3 ]
Li, Na [4 ]
Xiong, Jing [1 ]
Wang, Lei [1 ]
Xie, Yaoqin [1 ]
Liang, Xiaokun [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[3] Wake Forest Univ, Bowman Gray Sch Med, Dept Radiat Oncol, Winston Salem, NC 27157 USA
[4] Guangdong Med Univ, Dept Biomed Engn, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical Image Segmentation; Data Augmentation; Deep Learning; Deformable Image Registration; DEEP LEARNING FRAMEWORK; ORGANS; NETWORK; RISK; NET;
D O I
10.1016/j.media.2023.102984
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate delineation of organs-at-risk (OARs) is a crucial step in treatment planning during radiotherapy, as it minimizes the potential adverse effects of radiation on surrounding healthy organs. However, manual contouring of OARs in computed tomography (CT) images is labor-intensive and susceptible to errors, particularly for low-contrast soft tissue. Deep learning-based artificial intelligence algorithms surpass traditional methods but require large datasets. Obtaining annotated medical images is both time-consuming and expensive, hindering the collection of extensive training sets. To enhance the performance of medical image segmentation, augmentation strategies such as rotation and Gaussian smoothing are employed during preprocessing. However, these conventional data augmentation techniques cannot generate more realistic deformations, limiting improvements in accuracy. To address this issue, this study introduces a statistical deformation model-based data augmentation method for volumetric medical image segmentation. By applying diverse and realistic data augmentation to CT images from a limited patient cohort, our method significantly improves the fully automated segmentation of OARs across various body parts. We evaluate our framework on three datasets containing tumor OARs from the head, neck, chest, and abdomen. Test results demonstrate that the proposed method achieves state-of-the-art performance in numerous OARs segmentation challenges. This innovative approach holds considerable potential as a powerful tool for various medical imaging-related sub-fields, effectively addressing the challenge of limited data access.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A new data augmentation method based on local image warping for medical image segmentation
    Liu, Hong
    Cao, Haichao
    Song, Enmin
    Ma, Guangzhi
    Xu, Xiangyang
    Jin, Renchao
    Liu, Tengying
    Liu, Lei
    Liu, Daiyang
    Hung, Chih-Cheng
    MEDICAL PHYSICS, 2021, 48 (04) : 1685 - 1696
  • [2] Medical image segmentation data augmentation method based on channel weight and data-efficient features
    Wu X.
    Tao C.
    Li Z.
    Zhang J.
    Sun Q.
    Han X.
    Chen Y.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2024, 41 (02): : 220 - 227
  • [3] HSMix: Hard and soft mixing data augmentation for medical image segmentation
    Sun, D.
    Dornaika, F.
    Barrena, N.
    INFORMATION FUSION, 2025, 115
  • [4] LesionMix: A Lesion-Level Data Augmentation Method for Medical Image Segmentation
    Basaran, Berke Doga
    Zhang, Weitong
    Qiao, Mengyun
    Kainz, Bernhard
    Matthews, Paul M.
    Bai, Wenjia
    DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS, DALI 2023, 2024, 14379 : 73 - 83
  • [5] A medical image segmentation method based on multi-dimensional statistical features
    Xu, Yang
    He, Xianyu
    Xu, Guofeng
    Qi, Guanqiu
    Yu, Kun
    Yin, Li
    Yang, Pan
    Yin, Yuehui
    Chen, Hao
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [6] Semi-supervised task-driven data augmentation for medical image segmentation
    Chaitanya, Krishna
    Karani, Neerav
    Baumgartner, Christian F.
    Erdil, Ertunc
    Becker, Anton
    Donati, Olivio
    Konukoglu, Ender
    MEDICAL IMAGE ANALYSIS, 2021, 68
  • [7] A data augmentation approach that ensures the reliability of foregrounds in medical image segmentation
    Liu, Xiaoqing
    Ono, Kenji
    Bise, Ryoma
    IMAGE AND VISION COMPUTING, 2024, 147
  • [8] DEA: Data-efficient augmentation for interpretable medical image segmentation
    Wu, Xing
    Li, Zhi
    Tao, Chenjie
    Han, Xianhua
    Chen, Yen-Wei
    Yao, Junfeng
    Zhang, Jian
    Sun, Qun
    Li, Weimin
    Liu, Yue
    Guo, Yike
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89
  • [9] Differentiable Automatic Data Augmentation by Proximal Update for Medical Image Segmentation
    He, Wenxuan
    Liu, Min
    Tang, Yi
    Liu, Qinghao
    Wang, Yaonan
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (07) : 1315 - 1318
  • [10] Tea Disease Recognition Based on Image Segmentation and Data Augmentation
    Li, Ji
    Liao, Chenyi
    IEEE ACCESS, 2025, 13 : 19664 - 19677