Machine learning approach for prediction of total electron content and classification of ionospheric scintillations over Visakhapatnam region

被引:1
|
作者
Nimmakayala, Shiva Kumar [1 ]
Dutt, V. B. S. Srilatha Indira [1 ]
机构
[1] GITAM Deemed be Univ, GITAM Sch Technol, Dept EECE, Hyderabad 530045, Andhra Pradesh, India
关键词
SOLAR-ACTIVITY; GPS; MULTIPATH; PHASE;
D O I
10.1063/5.0176196
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ionospheric scintillations, which are due to ionospheric plasma density anomalies, negatively impact trans-ionospheric signals and the positioning accuracy of the global navigation satellite system (GNSS). One of the crucial variables for comprehending space weather conditions is the total electron content (TEC) of the ionosphere. It is vital to predict the ionospheric TEC before making efforts to enhance the GNSS system. In this article, the long short-term memory machine learning approach for TEC prediction is presented, based on which the ionospheric phase scintillations are identified and classified using popular classifiers: support vector machines and decision trees. In this article, the comparative analysis of these classifiers is presented using the standard performance metrics: accuracy, recall, precision, and F1 score.
引用
收藏
页数:7
相关论文
共 29 条
  • [1] Investigation of Ionospheric Scintillations and Total Electron Content (TEC) over Mid-latitudinal Region (Pakistan)
    Hussain, Arif
    Ahmed, Arslan
    2019 SIXTH INTERNATIONAL CONFERENCE ON AEROSPACE SCIENCE AND ENGINEERING (ICASE), 2019, : 130 - 134
  • [2] Variation of the Ionospheric Total Electron Content over Wuhan
    Wang Bo
    Wang Weimin
    Zhang Ren
    Cao Ke
    2011 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE (ICMI 2011), PT 2, 2011, 4 : 171 - +
  • [3] Improved Ionospheric Total Electron Content Maps over China Using Spatial Gridding Approach
    Song, Fucheng
    Shi, Shuangshuang
    ATMOSPHERE, 2024, 15 (03)
  • [4] EARTHQUAKE PREDICTION, IONOSPHERIC TOTAL ELECTRON CONTENT, AND THREE EARTHQUAKES IN CALIFORNIA
    Urusan, Ahmet Yucel
    THERMAL SCIENCE, 2019, 23 : S165 - S174
  • [5] A deep learning approach for the prediction of ionospheric total electron content (TEC) based on combined prediction and two-step loss fine-tuning
    Deng, Mingjun
    Li, Keyu
    Liu, Ning
    Bu, Lijing
    Zhang, Zhengpeng
    Wang, Chengjun
    Yang, Yin
    Nie, Xiaoting
    MEASUREMENT, 2025, 248
  • [6] Correlation distance of ionospheric total electron content in the Indian low latitude region
    Borah, Rashmi Rekha
    Bhuyan, K.
    Bhuyan, P. K.
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE, 2008, 82 (05): : 545 - 550
  • [7] Spatiotemporal Prediction of Ionospheric Total Electron Content Based on ED-ConvLSTM
    Li, Liangchao
    Liu, Haijun
    Le, Huijun
    Yuan, Jing
    Shan, Weifeng
    Han, Ying
    Yuan, Guoming
    Cui, Chunjie
    Wang, Junling
    REMOTE SENSING, 2023, 15 (12)
  • [8] Optimal Transformer Modeling by Space Embedding for Ionospheric Total Electron Content Prediction
    Lin, Mengying
    Zhu, Xuefen
    Tu, Gangyi
    Chen, Xiyaun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [9] A stacked machine learning model for the vertical total electron content forecasting
    Asamoah, Eric Nana
    Cafaro, Massimo
    Epicoco, Italo
    De Franceschi, Giorgiana
    Cesaroni, Claudio
    ADVANCES IN SPACE RESEARCH, 2024, 74 (01) : 223 - 242
  • [10] L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum
    Cesaroni, Claudio
    Spogli, Luca
    Alfonsi, Lucilla
    De Franceschi, Giorgiana
    Ciraolo, Luigi
    Galera Monico, Joao Francisco
    Scotto, Carlo
    Romano, Vincenzo
    Aquino, Marcio
    Bougard, Bruno
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2015, 5